enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Clausius–Clapeyron relation - Wikipedia

    en.wikipedia.org/wiki/ClausiusClapeyron_relation

    Substituting into the Clapeyron equation =, we can obtain the Clausius–Clapeyron equation [8]: 509 = for low temperatures and pressures, [8]: 509 where is the specific latent heat of the substance. Instead of the specific, corresponding molar values (i.e. L {\displaystyle L} in kJ/mol and R = 8.31 J/(mol⋅K)) may also be used.

  3. Reflections on the Motive Power of Fire - Wikipedia

    en.wikipedia.org/wiki/Reflections_on_the_Motive...

    The German physicist Rudolf Clausius learned of Carnot's work through Clapeyron's memoir. Clausius corrected Carnot's theory by replacing the conservation of caloric with the work-heat equivalence (i.e., energy conservation). Clausius also put the second law of thermodynamics into mathematical form by defining the concept of entropy.

  4. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  5. Ehrenfest equations - Wikipedia

    en.wikipedia.org/wiki/Ehrenfest_equations

    Ehrenfest equations (named after Paul Ehrenfest) are equations which describe changes in specific heat capacity and derivatives of specific volume in second-order phase transitions. The Clausius–Clapeyron relation does not make sense for second-order phase transitions, [ 1 ] as both specific entropy and specific volume do not change in second ...

  6. Third law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Third_law_of_thermodynamics

    As a result, the latent heat of melting is zero, and the slope of the melting curve extrapolates to zero as a result of the Clausius–Clapeyron equation. [ 13 ] : 140 Thermal expansion coefficient

  7. Clausius theorem - Wikipedia

    en.wikipedia.org/wiki/Clausius_theorem

    The Clausius theorem is a mathematical representation of the second law of thermodynamics. It was developed by Rudolf Clausius who intended to explain the relationship between the heat flow in a system and the entropy of the system and its surroundings. Clausius developed this in his efforts to explain entropy and define it quantitatively.

  8. Talk:Clausius–Clapeyron relation - Wikipedia

    en.wikipedia.org/wiki/Talk:ClausiusClapeyron...

    It goes on to say, however, that the exact equation is called the Clausius-Clapeyron equation in most texts for engineering thermodynamics and physics. (On the previous page, discussing the exact equation, the book said the exact version was called the Clapeyron equation, but said that it was also known as the Clausius-Clapeyron equation.)

  9. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    The first explicit statement of the first law of thermodynamics, by Rudolf Clausius in 1850, referred to cyclic thermodynamic processes, and to the existence of a function of state of the system, the internal energy. He expressed it in terms of a differential equation for the increments of a thermodynamic process. [16]