Search results
Results from the WOW.Com Content Network
Biomolecules are an important element of living organisms. They are often endogenous, [2] i.e. produced within the organism, [3] but organisms usually also need exogenous biomolecules, for example certain nutrients, to survive. Biomolecules and their reactions are studied in biology and its subfields of biochemistry and molecular biology.
For substances with an A- or α- prefix such as α-amylase, please see the parent page (in this case Amylase). A23187 (Calcimycin, Calcium Ionophore); Abamectine; Abietic acid
Depending on how many molecules come together, a reaction can be unimolecular, bimolecular or even trimolecular. The kinetic order of any elementary reaction or reaction step is equal to its molecularity, and the rate equation of an elementary reaction can therefore be determined by inspection, from the molecularity. [1]
The term 'molecular biology' was first used in 1945 by the English physicist William Astbury, who described it as an approach focused on discerning the underpinnings of biological phenomena—i.e. uncovering the physical and chemical structures and properties of biological molecules, as well as their interactions with other molecules and how ...
For example, the most widely studied bacterium, E. coli strain K-12, is able to produce about 2,338 metabolic enzymes. [1] These enzymes collectively form a complex web of reactions comprising pathways by which substrates (including nutients and intermediates) are converted to products (other intermediates and end-products).
Elimination reaction of cyclohexanol to cyclohexene with sulfuric acid and heat [1] An elimination reaction is a type of organic reaction in which two substituents are removed from a molecule in either a one- or two-step mechanism. [2] The one-step mechanism is known as the E2 reaction, and the two-step mechanism is known as the E1 reaction ...
Biomolecular structure is the intricate folded, three-dimensional shape that is formed by a molecule of protein, DNA, or RNA, and that is important to its function.The structure of these molecules may be considered at any of several length scales ranging from the level of individual atoms to the relationships among entire protein subunits.
Response to stimuli: a response can take many forms, from the contraction of a unicellular organism to external chemicals, to complex reactions involving all the senses of multicellular organisms. A response is often expressed by motion; for example, the leaves of a plant turning toward the sun (phototropism), and chemotaxis.