Search results
Results from the WOW.Com Content Network
At the other end of the spectrum, benthos of the deep ocean includes the bottom levels of the oceanic abyssal zone. [7] For information on animals that live in the deeper areas of the oceans see aphotic zone. Generally, these include life forms that tolerate cool temperatures and low oxygen levels, but this depends on the depth of the water. [8]
Benthos (from Ancient Greek βένθος (bénthos) 'the depths [of the sea]'), also known as benthon, is the community of organisms that live on, in, or near the bottom of a sea, river, lake, or stream, also known as the benthic zone. [1]
Benthic-pelagic coupling are processes that connect the benthic zone and the pelagic zone through the exchange of energy, mass, or nutrients. These processes play a prominent role in both freshwater and marine ecosystems and are influenced by a number of chemical, biological, and physical forces that are crucial to functions from nutrient cycling to energy transfer in food webs.
The BBL is generated by the friction of the water moving over the surface of the substrate, which decrease the water current significantly in this layer. [2] The thickness of this zone is determined by many factors, including the Coriolis force. The benthic organisms and processes in this boundary layer echo the water column above them. [2]
The diagram also shows how human water use impacts where water is stored and how it moves. [1] The water cycle (or hydrologic cycle or hydrological cycle) is a biogeochemical cycle that involves the continuous movement of water on, above and below the surface of the Earth. The mass of water on Earth remains fairly constant over time.
The pelagic zone consists of the water column of the open ocean and can be further divided into regions by depth. The word pelagic is derived from Ancient Greek πέλαγος (pélagos) 'open sea'. [1] The pelagic zone can be thought of as an imaginary cylinder or water column between the surface of the sea and the bottom.
Macrobenthos consists of the organisms that live at the bottom of a water column [1] and are visible to the naked eye. [2] In some classification schemes, these organisms are larger than 1 mm; [1] in another, the smallest dimension must be at least 0.5 mm. [3] They include polychaete worms, pelecypods, anthozoans, echinoderms, sponges, ascidians, crustaceans.
Samples are shaken in an excess of water, the sediment is briefly allowed to settle, and then the meiofauna are filtered off. The second methodology, the flotation technique, works best with finer sediments, where the mass of the sediment particles is close to that of the meiofauna. The best solution for this technique is the colloidal silica ...