Search results
Results from the WOW.Com Content Network
In tightly packed planetary systems, the gravitational pull of the planets among themselves causes one planet to accelerate and another planet to decelerate along its orbit. The acceleration causes the orbital period of each planet to change. Detecting this effect by measuring the change is known as transit-timing variations.
The radii of these objects range over three orders of magnitude, from planetary-mass objects like dwarf planets and some moons to the planets and the Sun. This list does not include small Solar System bodies , but it does include a sample of possible planetary-mass objects whose shapes have yet to be determined.
Reconciliation of general relativity with the laws of quantum physics remains a problem, however, as there is a lack of a self-consistent theory of quantum gravity. It is not yet known how gravity can be unified with the three non-gravitational forces: strong, weak and electromagnetic.
Solutions are also used to describe the motion of binary stars around each other, and estimate their gradual loss of energy through gravitational radiation. General relativity describes the gravitational field by curved space-time; the field equations governing this curvature are nonlinear and therefore difficult to solve in a closed form.
Gravitation, also known as gravitational attraction, is the mutual attraction between all masses in the universe.Gravity is the gravitational attraction at the surface of a planet or other celestial body; [6] gravity may also include, in addition to gravitation, the centrifugal force resulting from the planet's rotation (see § Earth's gravity).
In addition to orbits around Lagrange points, the rich dynamics that arise from the gravitational pull of more than one mass yield interesting trajectories, also known as low energy transfers. [4] For example, the gravity environment of the Sun–Earth–Moon system allows spacecraft to travel great distances on very little fuel, [ citation ...
The equivalence between gravitational and inertial effects does not constitute a complete theory of gravity. When it comes to explaining gravity near our own location on the Earth's surface, noting that our reference frame is not in free fall, so that fictitious forces are to be expected, provides a suitable explanation. But a freely falling ...
A gravity assist maneuver, sometimes known as a "slingshot maneuver" or Crocco mission after its 1956 proposer Gaetano Crocco, results in an opposition-class mission with a much shorter dwell time at the destination. [29] [27] This is accomplished by swinging past another planet, using its gravity to alter the orbit. A round trip to Mars, for ...