Search results
Results from the WOW.Com Content Network
An early stage of hyperthermia can be "heat exhaustion" (or "heat prostration" or "heat stress"), whose symptoms can include heavy sweating, rapid breathing and a fast, weak pulse. If the condition progresses to heat stroke, then hot, dry skin is typical [ 2 ] as blood vessels dilate in an attempt to increase heat loss.
This increases heat production as respiration is an exothermic reaction in muscle cells. Shivering is more effective than exercise at producing heat because the animal (includes humans) remains still. This means that less heat is lost to the environment through convection. There are two types of shivering: low-intensity and high-intensity.
Physiology: Newborns lack the ability of thermogenesis due to underdeveloped shivering mechanism. Body heat is lost through conduction, convection, and radiant heat. [ 1 ] Thermoregulation is achieved through several methods: the metabolism of brown fat and Kangaroo care, also known as skin to skin.
The statement of Newton's law used in the heat transfer literature puts into mathematics the idea that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings. For a temperature-independent heat transfer coefficient, the statement is:
Young children have age specific physiologic differences that make them more susceptible to heat stroke including an increased surface area to mass ratio (leading to increased environmental heat absorption), an underdeveloped thermoregulatory system, a decreased sweating rate and a decreased blood volume to body size ratio (leading to decreased ...
In shivering, the heat is the main intended product and is utilized for warmth. [citation needed] Newborn babies, infants, and young children experience a greater (net) heat loss than adults because of greater surface-area-to-volume ratio. As they cannot shiver to maintain body heat, [citation needed] they rely on non-shivering thermogenesis.
A 2022 study on the effect of heat on young people found that the critical wet-bulb temperature at which heat stress can no longer be compensated, T wb,crit, in young, healthy adults performing tasks at modest metabolic rates mimicking basic activities of daily life was much lower than the 35°C usually assumed, at about 30.55°C in 36–40°C ...
Convection-cooling is sometimes loosely assumed to be described by Newton's law of cooling. [6] Newton's law states that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings while under the effects of a breeze. The constant of proportionality is the heat transfer coefficient. [7]