Search results
Results from the WOW.Com Content Network
In the field of quantum information theory, the quantum systems studied are abstracted away from any real world counterpart. A qubit might for instance physically be a photon in a linear optical quantum computer, an ion in a trapped ion quantum computer, or it might be a large collection of atoms as in a superconducting quantum computer.
Quantum Information Science is a field that combines the principles of quantum mechanics with information theory to study the processing, analysis, and transmission of information. It covers both theoretical and experimental aspects of quantum physics, including the limits of what can be achieved with quantum information .
But the no-hiding theorem is a more general proof of conservation of quantum information which originates from the proof of conservation of wave function in quantum theory. It may be noted that the conservation of entropy holds for a quantum system undergoing unitary time evolution and if entropy represents information in quantum theory, then ...
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science.
Quantum information theory is a generalization of classical information theory to use quantum-mechanical particles and interference. It is used in the study of quantum computation and quantum cryptography .
D'Ariano has played a major role in making quantum information theory a new paradigm for the foundations of quantum theory and fundamental physics in general. In 2010, he proposed a set of information-theoretical postulates for a rigorous derivation of (finite-dimensional) Quantum Theory, [ 19 ] a derivation subsequently achieved in his ...
Physicist Leslie E. Ballentine gave the textbook a positive review, declaring it a good introduction to quantum foundations and ongoing research therein. [9] John C. Baez also gave the book a positive assessment, calling it "clear-headed" and finding that it contained "a lot of gems that I hadn't seen", such as the Wigner–Araki–Yanase theorem. [10]
Reinhard F. Werner (born 26th march 1954) is a German physicist, and Professor at the Institute of Theoretical Physics at the Leibniz Universität Hannover. [1]He is notable for his contributions to the field of quantum information theory such as foundational concepts in the theory of quantum correlations including the concept of separable quantum states and mixed entangled states now known as ...