enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Position (geometry) - Wikipedia

    en.wikipedia.org/wiki/Position_(geometry)

    In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents a point P in space. Its length represents the distance in relation to an arbitrary reference origin O , and its direction represents the angular orientation with respect to given reference axes.

  3. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    In physics and geometry, there are two closely related vector spaces, usually three-dimensional but in general of any finite dimension. Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space.

  4. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called vectors, can be added together and multiplied ("scaled") by numbers called scalars. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms.

  5. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Position, when thought of as a displacement from an origin point, is a vector: a quantity with both magnitude and direction. [9]: 1 Velocity and acceleration are vector quantities as well. The mathematical tools of vector algebra provide the means to describe motion in two, three or more dimensions.

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  7. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    The formula for the acceleration A P can now be obtained as: = ˙ + + (), or = / + / +, where α is the angular acceleration vector obtained from the derivative of the angular velocity vector; / =, is the relative position vector (the position of P relative to the origin O of the moving frame M); and = ¨ is the acceleration of the origin of ...

  8. Coordinate system - Wikipedia

    en.wikipedia.org/wiki/Coordinate_system

    The coordinates are taken to be real numbers in elementary mathematics, but may be complex numbers or elements of a more abstract system such as a commutative ring. The use of a coordinate system allows problems in geometry to be translated into problems about numbers and vice versa ; this is the basis of analytic geometry .

  9. Frame of reference - Wikipedia

    en.wikipedia.org/wiki/Frame_of_reference

    [21] [22] In general relativity the use of general coordinate systems is common (see, for example, the Schwarzschild solution for the gravitational field outside an isolated sphere [23]). There are two types of observational reference frame: inertial and non-inertial. An inertial frame of reference is defined as one in which all laws of physics ...