enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Useful conversions and formulas for air dispersion modeling

    en.wikipedia.org/wiki/Useful_conversions_and...

    Meteorological data includes wind speeds which may be expressed as statute miles per hour, knots, or meters per second. Here are the conversion factors for those various expressions of wind speed: 1 m/s = 2.237 statute mile/h = 1.944 knots 1 knot = 1.151 statute mile/h = 0.514 m/s 1 statute mile/h = 0.869 knots = 0.447 m/s. Note:

  3. Log wind profile - Wikipedia

    en.wikipedia.org/wiki/Log_wind_profile

    When estimating wind loads on structures the terrains may be described as suburban or dense urban, for which the ranges are typically 0.1-0.5 m and 1-5 m respectively. [ 2 ] In order to estimate the mean wind speed at one height ( z 2 {\displaystyle {{z}_{2}}} ) based on that at another ( z 1 {\displaystyle {{z}_{1}}} ), the formula would be ...

  4. Wind profile power law - Wikipedia

    en.wikipedia.org/wiki/Wind_profile_power_law

    The power law is often used in wind power assessments [4] [5] where wind speeds at the height of a turbine ( 50 metres) must be estimated from near surface wind observations (~10 metres), or where wind speed data at various heights must be adjusted to a standard height [6] prior to use.

  5. Forces on sails - Wikipedia

    en.wikipedia.org/wiki/Forces_on_sails

    Measurements show that wind speed, (V (h) ) varies, according to a power law with height (h) above a non-zero measurement height datum (h 0 —e.g. at the height of the foot of a sail), using a reference wind speed measured at the datum height (V (h 0) ), as follows: [24] [25]

  6. Roughness length - Wikipedia

    en.wikipedia.org/wiki/Roughness_length

    Roughness length is a parameter of some vertical wind profile equations that model the horizontal mean wind speed near the ground. In the log wind profile, it is equivalent to the height at which the wind speed theoretically becomes zero in the absence of wind-slowing obstacles and under neutral conditions. In reality, the wind at this height ...

  7. Wind gradient - Wikipedia

    en.wikipedia.org/wiki/Wind_gradient

    In common usage, wind gradient, more specifically wind speed gradient [1] or wind velocity gradient, [2] or alternatively shear wind, [3] is the vertical component of the gradient of the mean horizontal wind speed in the lower atmosphere. [4] It is the rate of increase of wind strength with unit increase in height above ground level.

  8. Beaufort scale - Wikipedia

    en.wikipedia.org/wiki/Beaufort_scale

    Wind speed on the Beaufort scale is based on the empirical relationship: [6] v = 0.836 B 3/2 m/s; v = 1.625 B 3/2 knots (=) where v is the equivalent wind speed at 10 metres above the sea surface and B is Beaufort scale number.

  9. Wind engineering - Wikipedia

    en.wikipedia.org/wiki/Wind_engineering

    Flow visualization of wind speed contours around a house Wind engineering covers the aerodynamic effects of buildings Damaged wind turbines due to hurricane Maria. Wind engineering is a subset of mechanical engineering, structural engineering, meteorology, and applied physics that analyzes the effects of wind in the natural and the built environment and studies the possible damage ...