Search results
Results from the WOW.Com Content Network
Given a measurable space (,) and a measure on that space, a set in is called an atom if > and for any measurable subset , either () = or () = (). [ 1 ] The equivalence class of A {\displaystyle A} is defined by [ A ] := { B ∈ Σ : μ ( A Δ B ) = 0 } , {\displaystyle [A]:=\{B\in \Sigma :\mu (A\Delta B)=0\},} where Δ {\displaystyle \Delta ...
In the mathematical field of order theory, an element a of a partially ordered set with least element 0 is an atom if 0 < a and there is no x such that 0 < x < a. Equivalently, one may define an atom to be an element that is minimal among the non-zero elements, or alternatively an element that covers the least element 0 .
The ordered field of real algebraic numbers is the unique atomic model of the theory of real closed fields.; Any finite model is atomic. A dense linear ordering without endpoints is atomic.
Atomic units are chosen to reflect the properties of electrons in atoms, which is particularly clear in the classical Bohr model of the hydrogen atom for the bound electron in its ground state: Mass = 1 a.u. of mass; Charge = −1 a.u. of charge; Orbital radius = 1 a.u. of length; Orbital velocity = 1 a.u. of velocity [44]: 597
In a simulation, the potential energy of an atom, , is given by [3] = (()) + (), where is the distance between atoms and , is a pair-wise potential function, is the contribution to the electron charge density from atom of type at the location of atom , and is an embedding function that represents the energy required to place atom of type into the electron cloud.
In the vortex theory of the atom, a chemical atom is modelled by such a vortex in the aether. Knots can be tied in the core of such a vortex, leading to the hypothesis that each chemical element corresponds to a different kind of knot. The simple toroidal vortex, represented by the circular "unknot" 0 1, was thought to represent hydrogen.
From Wikipedia, the free encyclopedia. Redirect page
If an atom has more electrons than protons, then it has an overall negative charge and is called a negative ion (or anion). Conversely, if it has more protons than electrons, it has a positive charge and is called a positive ion (or cation). The electrons of an atom are attracted to the protons in an atomic nucleus by the electromagnetic force.