Search results
Results from the WOW.Com Content Network
Drift velocity is proportional to current. In a resistive material, it is also proportional to the magnitude of an external electric field. Thus Ohm's law can be explained in terms of drift velocity. The law's most elementary expression is: =, where u is drift velocity, μ is the material's electron mobility, and E is the electric field.
The drift velocity is = Because of the mass dependence, the gravitational drift for the electrons can normally be ignored. The dependence on the charge of the particle implies that the drift direction is opposite for ions as for electrons, resulting in a current.
The drift velocity is the average velocity of the charge carriers in the drift current. The drift velocity, and resulting current, is characterized by the mobility; for details, see electron mobility (for solids) or electrical mobility (for a more general discussion). See drift–diffusion equation for the way that the drift current, diffusion ...
The drift velocity deals with the average velocity of a particle, such as an electron, due to an electric field. In general, an electron will propagate randomly in a conductor at the Fermi velocity. [5] Free electrons in a conductor follow a random path. Without the presence of an electric field, the electrons have no net velocity.
Velocity saturation is not the only possible high-field behavior. Another is the Gunn effect, where a sufficiently high electric field can cause intervalley electron transfer, which reduces drift velocity. This is unusual; increasing the electric field almost always increases the drift velocity, or else
In continuum mechanics the flow velocity in fluid dynamics, also macroscopic velocity [1] [2] in statistical mechanics, or drift velocity in electromagnetism, is a vector field used to mathematically describe the motion of a continuum. The length of the flow velocity vector is scalar, the flow speed.
For a pure wave motion in fluid dynamics, the Stokes drift velocity is the average velocity when following a specific fluid parcel as it travels with the fluid flow. For instance, a particle floating at the free surface of water waves , experiences a net Stokes drift velocity in the direction of wave propagation .
where ω is the angular velocity of the cylinder (in rad/s) and r is the radius of the ... the Magnus effect contributes to the types of motion known as drift, ...