Search results
Results from the WOW.Com Content Network
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [2] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [3]
Formula 4 is the first step out of karting on the FIA Global Pathway, and by design has the least performance of any of the cars in it. Compared to road-legal supercars, Formula 4 cars are less accelerative and have a much lower top speed of approximately 240 km/h; most modern supercars are capable of in excess of 300 km/h. The F4 cars have far ...
Under these conditions, p 1 V 1 γ = p 2 V 2 γ, where γ is defined as the heat capacity ratio, which is constant for a calorifically perfect gas. The value used for γ is typically 1.4 for diatomic gases like nitrogen (N 2) and oxygen (O 2), (and air, which is 99% diatomic).
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
farad (F = C/V) L −2 M −1 T 4 I 2: scalar Catalytic activity concentration: Change in reaction rate due to presence of a catalyst per unit volume of the system kat⋅m −3: L −3 T −1 N: intensive Chemical potential: μ: Energy per unit change in amount of substance J/mol L 2 M T −2 N −1: intensive Dose equivalent: H
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The Gibbs free energy is one of the 4 thermodynamic potentials whose partial derivatives produce all other thermodynamics state properties; [54] its differential is = + =. Integrating this over an isotherm from p s , v f {\displaystyle p_{s},v_{f}} to p s , v g {\displaystyle p_{s},v_{g}} , noting that the pressure is the same at each endpoint ...