enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Active site - Wikipedia

    en.wikipedia.org/wiki/Active_site

    The active site consists of amino acid residues that form temporary bonds with the substrate, the binding site, and residues that catalyse a reaction of that substrate, the catalytic site. Although the active site occupies only ~10–20% of the volume of an enzyme, [1]: 19 it is the most important part as it directly catalyzes the chemical ...

  3. RuBisCO - Wikipedia

    en.wikipedia.org/wiki/RuBisCo

    RuBisCO is important biologically because it catalyzes the primary chemical reaction by which inorganic carbon enters the biosphere.While many autotrophic bacteria and archaea fix carbon via the reductive acetyl CoA pathway, the 3-hydroxypropionate cycle, or the reverse Krebs cycle, these pathways are relatively small contributors to global carbon fixation compared to that catalyzed by RuBisCO.

  4. Adenylyl cyclase - Wikipedia

    en.wikipedia.org/wiki/Adenylyl_cyclase

    Adenylate cyclase (EC 4.6.1.1, also commonly known as adenyl cyclase and adenylyl cyclase, abbreviated AC) is an enzyme with systematic name ATP diphosphate-lyase (cyclizing; 3′,5′-cyclic-AMP-forming). It catalyzes the following reaction: ATP = 3′,5′-cyclic AMP + diphosphate. It has key regulatory roles in essentially all cells. [2]

  5. Hydrolase - Wikipedia

    en.wikipedia.org/wiki/Hydrolase

    Hydrolase enzymes are important for the body because they have degradative properties. In lipids, lipases contribute to the breakdown of fats and lipoproteins and other larger molecules into smaller molecules like fatty acids and glycerol. Fatty acids and other small molecules are used for synthesis and as a source of energy.

  6. Serine protease - Wikipedia

    en.wikipedia.org/wiki/Serine_protease

    proteins. Crystal structure of Trypsin, a typical serine protease. Serine proteases (or serine endopeptidases) are enzymes that cleave peptide bonds in proteins. Serine serves as the nucleophilic amino acid at the (enzyme's) active site. [1] They are found ubiquitously in both eukaryotes and prokaryotes.

  7. Glutamine synthetase - Wikipedia

    en.wikipedia.org/wiki/Glutamine_synthetase

    Each active site creates a ‘tunnel’ which is the site of three distinct substrate binding sites: nucleotide, ammonium ion, and amino acid. [4] [6] [10] [11] ATP binds to the top of the bifunnel that opens to the external surface of GS. [4] Glutamate binds at the bottom of the active site. [7]

  8. Acetylcholinesterase - Wikipedia

    en.wikipedia.org/wiki/Acetylcholinesterase

    Acetylcholinesterase (HGNC symbol ACHE; EC 3.1.1.7; systematic name acetylcholine acetylhydrolase), also known as AChE, AChase or acetylhydrolase, is the primary cholinesterase in the body. It is an enzyme that catalyzes the breakdown of acetylcholine and some other choline esters that function as neurotransmitters:

  9. Aspartate carbamoyltransferase - Wikipedia

    en.wikipedia.org/wiki/Aspartate_carbamoyltransferase

    Aspartate carbamoyltransferase (also known as aspartate transcarbamoylase or ATCase) catalyzes the first step in the pyrimidine biosynthetic pathway (EC 2.1.3.2). [1] In E. coli, the enzyme is a multi- subunit protein complex composed of 12 subunits (300 kDa in total). [2] The composition of the subunits is C 6 R 6, forming 2 trimers of ...