Search results
Results from the WOW.Com Content Network
XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate implements an exclusive or from mathematical logic; that is, a true output results if one, and only one, of the inputs to the gate is true.
A logic circuit diagram for a 4-bit carry lookahead binary adder design using only the AND, OR, and XOR logic gates.. A logic gate is a device that performs a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output.
In fact, both NAND and NOR gates are so-called "universal gates" and any logical function can be constructed from either NAND logic or NOR logic alone. If the four NOR gates are replaced by NAND gates, this results in an XOR gate, which can be converted to an XNOR gate by inverting the output or one of the inputs (e.g. with a fifth NAND gate).
In logical circuits, a simple adder can be made with an XOR gate to add the numbers, and a series of AND, OR and NOT gates to create the carry output. On some computer architectures, it is more efficient to store a zero in a register by XOR-ing the register with itself (bits XOR-ed with themselves are always zero) than to load and store the ...
A single NOR gate. A NOR gate or a NOT OR gate is a logic gate which gives a positive output only when both inputs are negative.. Like NAND gates, NOR gates are so-called "universal gates" that can be combined to form any other kind of logic gate.
The 3-input Fredkin gate is functionally complete reversible gate by itself – a sole sufficient operator. There are many other three-input universal logic gates, such as the Toffoli gate. In quantum computing, the Hadamard gate and the T gate are universal, albeit with a slightly more restrictive definition than that of functional completeness.
Implementation of an XOR gate using a 2-2-OAI gate. References This page was last edited on 10 April 2024, at 06:56 (UTC). Text is available under the ...
A CMOS transistor NAND element. V dd denotes positive voltage.. In CMOS logic, if both of the A and B inputs are high, then both the NMOS transistors (bottom half of the diagram) will conduct, neither of the PMOS transistors (top half) will conduct, and a conductive path will be established between the output and Vss (ground), bringing the output low.