Search results
Results from the WOW.Com Content Network
XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate implements an exclusive or from mathematical logic; that is, a true output results if one, and only one, of the inputs to the gate is true.
A single NOR gate. A NOR gate or a NOT OR gate is a logic gate which gives a positive output only when both inputs are negative.. Like NAND gates, NOR gates are so-called "universal gates" that can be combined to form any other kind of logic gate.
An example of a 3-1 OAI-gate is shown in the figure below. [1] Examples of use ... Implementation of an XOR gate using a 2-2-OAI gate. References
This explains why "EQ" is often called "XNOR" in the combinational logic of circuit engineers, since it is the negation of the XOR operation; "NXOR" is a less commonly used alternative. [1] Another rationalization of the admittedly circuitous name "XNOR" is that one begins with the "both false" operator NOR and then adds the eXception "or both ...
A NAND gate is equivalent to an OR gate with negated inputs, and a NOR gate is equivalent to an AND gate with negated inputs. This leads to an alternative set of symbols for basic gates that use the opposite core symbol (AND or OR) but with the inputs and outputs negated. Use of these alternative symbols can make logic circuit diagrams much ...
The XOR operation preserves randomness, meaning that a random bit XORed with a non-random bit will result in a random bit. Multiple sources of potentially random data can be combined using XOR, and the unpredictability of the output is guaranteed to be at least as good as the best individual source. [22]
The NOR gate is a digital logic gate that implements logical NOR - it behaves according to the truth table to the right. A HIGH output (1) results if both the inputs to the gate are LOW (0); if one or both input is HIGH (1), a LOW output (0) results.
The first input to the XOR gate is the actual input bit; The second input for each XOR gate is the control input D; This produces the same truth table for the bit arriving at the adder as the multiplexer solution does since the XOR gate output will be what the input bit is when D = 0 and the inverted input bit when D = 1.