Search results
Results from the WOW.Com Content Network
Square packing in a square is the problem of determining the maximum number of unit squares (squares of side length one) that can be packed inside a larger square of side length . If a {\displaystyle a} is an integer , the answer is a 2 , {\displaystyle a^{2},} but the precise – or even asymptotic – amount of unfilled space for an arbitrary ...
Many of these problems can be related to real-life packaging, storage and transportation issues. Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap. In a bin packing problem, people are given:
The problem of finding the largest square that lies entirely within a unit cube is closely related, and has the same solution. Prince Rupert's cube is named after Prince Rupert of the Rhine , who asked whether a cube could be passed through a hole made in another cube of the same size without splitting the cube into two pieces.
Circle packing in a square is a packing problem in recreational mathematics, where the aim is to pack n unit circles into the smallest possible square. Equivalently, the problem is to arrange n points in a unit square aiming to get the greatest minimal separation, d n, between points. [1] To convert between these two formulations of the problem ...
Doubling the cube: PB/PA = cube root of 2. The classical problem of doubling the cube can be solved using origami. This construction is due to Peter Messer: [38] A square of paper is first creased into three equal strips as shown in the diagram. Then the bottom edge is positioned so the corner point P is on the top edge and the crease mark on ...
Cubing the cube is the analogue in three dimensions of squaring the square: that is, given a cube C, the problem of dividing it into finitely many smaller cubes, no two congruent. Unlike the case of squaring the square, a hard yet solvable problem, there is no perfect cubed cube and, more generally, no dissection of a rectangular cuboid C into ...
Although the cubes of a polycube are required to be connected square-to-square, the squares of its boundary are not required to be connected edge-to-edge. For instance, the 26-cube formed by making a 3×3×3 grid of cubes and then removing the center cube is a valid polycube, in which the boundary of the interior void is not connected to the ...
The first nine blocks in the solution to the single-wide block-stacking problem with the overhangs indicated. In statics, the block-stacking problem (sometimes known as The Leaning Tower of Lire (Johnson 1955), also the book-stacking problem, or a number of other similar terms) is a puzzle concerning the stacking of blocks at the edge of a table.