Search results
Results from the WOW.Com Content Network
In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. [1] Just as the perimeter of the square consists of four edges and the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eight cubical cells, meeting at right angles.
Three-dimensional objects are bounded by two-dimensional surfaces: a cube is bounded by 6 square faces. By applying dimensional analogy, one may infer that a four-dimensional cube, known as a tesseract, is bounded by three-dimensional volumes. And indeed, this is the case: mathematics shows that the tesseract is bounded by 8 cubes.
In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3); the special case for n = 4 is known as a tesseract.It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length.
The convex regular 4-polytopes are the four-dimensional analogues of the Platonic solids. The most familiar 4-polytope is the tesseract or hypercube, the 4D analogue of the cube. The convex regular 4-polytopes can be ordered by size as a measure of 4-dimensional content (hypervolume) for the same radius.
The cube is the three-dimensional hypercube, a family of polytopes also including the two-dimensional square and four-dimensional tesseract. A cube with unit side length is the canonical unit of volume in three-dimensional space, relative to which other solid objects are measured. The cube can be represented in many ways, one of which is the ...
The square is two-dimensional (2D) and bounded by one-dimensional line segments; the cube is three-dimensional (3D) and bounded by two-dimensional squares; the tesseract is four-dimensional (4D) and bounded by three-dimensional cubes. The first four spatial dimensions, represented in a two-dimensional picture.
The current record-holder for a standard 3x3x3 cube is 22-year-old Korean American Max Park, who solved the Rubik’s Cube in 3.13 seconds at a competition in Long Beach, California last year ...
The tesseract is one of 6 convex regular 4-polytopes. In mathematics, a regular 4-polytope or regular polychoron is a regular four-dimensional polytope.They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions.