Search results
Results from the WOW.Com Content Network
Allele frequency, or gene frequency, is the relative frequency of an allele (variant of a gene) at a particular locus in a population, expressed as a fraction or percentage. [1] Specifically, it is the fraction of all chromosomes in the population that carry that allele over the total population or sample size.
Mutation will have a very subtle effect on allele frequencies through the introduction of new allele into a population. Mutation rates are of the order 10 −4 to 10 −8, and the change in allele frequency will be, at most, the same order. Recurrent mutation will maintain alleles in the population, even if there is strong selection against them.
In negative frequency-dependent selection, the fitness of a phenotype or genotype decreases as it becomes more common. This is an example of balancing selection. More generally, frequency-dependent selection includes when biological interactions make an individual's fitness depend on the frequencies of other phenotypes or genotypes in the ...
In population genetics, gene flow (also known as migration and allele flow) is the transfer of genetic material from one population to another. If the rate of gene flow is high enough, then two populations will have equivalent allele frequencies and therefore can be considered a single effective population.
The Hardy–Weinberg law describes the relationship between allele and genotype frequencies when a population is not evolving. Let's examine the Hardy–Weinberg equation using the population of four-o'clock plants that we considered above: if the allele A frequency is denoted by the symbol p and the allele a frequency denoted by q, then p+q=1.
For example, if a population includes allele A with frequency equal to 20%, and allele a with frequency equal to 80%, there is an 80% chance that after an infinite number of generations a will be fixed at the locus (assuming genetic drift is the only operating evolutionary force).
Population structure (also called genetic structure and population stratification) is the presence of a systematic difference in allele frequencies between subpopulations. In a randomly mating (or panmictic) population, allele frequencies are expected to be roughly similar between groups. However, mating tends to be non-random to some degree ...
Once an allele becomes fixed, genetic drift comes to a halt, and the allele frequency cannot change unless a new allele is introduced in the population via mutation or gene flow. Thus even while genetic drift is a random, directionless process, it acts to eliminate genetic variation over time.