enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Special linear group - Wikipedia

    en.wikipedia.org/wiki/Special_linear_group

    In mathematics, the special linear group SL(n, R) of degree n over a commutative ring R is the set of n × n matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix inversion. This is the normal subgroup of the general linear group given by the kernel of the determinant

  3. Representations of classical Lie groups - Wikipedia

    en.wikipedia.org/wiki/Representations_of...

    Since the orthogonal group is a subgroup of the general linear group, representations of () can be decomposed into representations of (). The decomposition of a tensor representation is given in terms of Littlewood-Richardson coefficients c λ , μ ν {\displaystyle c_{\lambda ,\mu }^{\nu }} by the Littlewood restriction rule [ 12 ]

  4. The Classical Groups - Wikipedia

    en.wikipedia.org/wiki/The_Classical_Groups

    Chapter II describes the invariants of the special and general linear group of a vector space V on the polynomials over a sum of copies of V and its dual. It uses the Capelli identity to find an explicit set of generators for the invariants. Chapter III studies the group ring of a finite group and its decomposition into a sum of matrix algebras.

  5. Special group (algebraic group theory) - Wikipedia

    en.wikipedia.org/wiki/Special_group_(algebraic...

    In the theory of algebraic groups, a special group is a linear algebraic group G with the property that every principal G-bundle is locally trivial in the Zariski topology. Special groups include the general linear group, the special linear group, and the symplectic group. Special groups are necessarily connected. Products of special groups are ...

  6. Linear algebraic group - Wikipedia

    en.wikipedia.org/wiki/Linear_algebraic_group

    Reductive groups include the most important linear algebraic groups in practice, such as the classical groups: GL(n), SL(n), the orthogonal groups SO(n) and the symplectic groups Sp(2n). On the other hand, the definition of reductive groups is quite "negative", and it is not clear that one can expect to say much about them.

  7. General linear group - Wikipedia

    en.wikipedia.org/wiki/General_linear_group

    The group GL(n, F) and its subgroups are often called linear groups or matrix groups (the automorphism group GL(V) is a linear group but not a matrix group). These groups are important in the theory of group representations , and also arise in the study of spatial symmetries and symmetries of vector spaces in general, as well as the study of ...

  8. List of group theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_group_theory_topics

    The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra.

  9. SL2 (R) - Wikipedia

    en.wikipedia.org/wiki/SL2(R)

    SL(2, R) is the group of all linear transformations of R 2 that preserve oriented area. It is isomorphic to the symplectic group Sp(2, R) and the special unitary group SU(1, 1). It is also isomorphic to the group of unit-length coquaternions. The group SL ± (2, R) preserves unoriented area: it may reverse orientation.