Search results
Results from the WOW.Com Content Network
Right ascension is measured eastward up to 24 h along the celestial equator from the primary direction. Right ascension (abbreviated RA; symbol α) is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the March equinox to the (hour circle of the) point in question above the Earth. [1]
Angles greater than 360° (2 π) or less than 0° may need to be reduced to the range 0°−360° (0–2 π) depending upon the particular calculating machine or program. The cosine of a latitude (declination, ecliptic and Galactic latitude, and altitude) are never negative by definition, since the latitude varies between −90° and +90°.
Denoted with the symbol Ω, it is the angle from a specified reference direction, called the origin of longitude, to the direction of the ascending node (☊), as measured in a specified reference plane. [1] The ascending node is the point where the orbit of the object passes through the plane of reference, as seen in the adjacent image.
Alternatively to right ascension, hour angle (abbreviated HA or LHA, local hour angle), a left-handed system, measures the angular distance of an object westward along the celestial equator from the observer's meridian to the hour circle passing through the object. Unlike right ascension, hour angle is always increasing with the rotation of Earth.
The azimuth is the angle formed between a reference direction (in this example north) and a line from the observer to a point of interest projected on the same plane as the reference direction orthogonal to the zenith. An azimuth (/ ˈ æ z ə m ə θ / ⓘ; from Arabic: اَلسُّمُوت, romanized: as-sumūt, lit.
The location is defined by a pair of angular coordinates relative to the celestial equator: right ascension (α) and declination (δ). This pair based the equatorial coordinate system. While δ is given in degrees (from +90° at the north celestial pole to −90° at the south), α is usually given in hour angles (0 to 24 h).
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
This is the coordinate system normally used to calculate the position of the Sun in terms of solar zenith angle and solar azimuth angle, and the two parameters can be used to depict the Sun path. [3] This calculation is useful in astronomy, navigation, surveying, meteorology, climatology, solar energy, and sundial design.