Search results
Results from the WOW.Com Content Network
In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non- quantum mechanical description of a system of particles, or of a fluid , in cases where the velocities of moving objects are comparable to the speed of light c .
The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun.
The three-body problem is a special case of the n-body problem. Historically, the first specific three-body problem to receive extended study was the one involving the Earth, the Moon, and the Sun. [2] In an extended modern sense, a three-body problem is any problem in classical mechanics or quantum mechanics that models the motion of three ...
As intriguing as geometric Newtonian gravity may be, its basis, classical mechanics, is merely a limiting case of (special) relativistic mechanics. [32] In the language of symmetry: where gravity can be neglected, physics is Lorentz invariant as in special relativity rather than Galilei invariant as in classical mechanics.
Relativistic mass, idea used by some researchers. [9] The defining feature of special relativity is the replacement of the Galilean transformations of classical mechanics by the Lorentz transformations. (See Maxwell's equations of electromagnetism.)
However, a number of effects in the Solar System cause the perihelia of planets to precess (rotate) around the Sun in the plane of their orbits, or equivalently, cause the major axis to rotate about the center of mass, hence changing its orientation in space. [6] The principal cause is the presence of other planets which perturb one another's ...
The problems associated with the standard formulation of relativistic quantum mechanics provide a clue to the validity of Hypothesis I. These problems included negative probabilities, hole theory, the Klein paradox , non-covariant expectation values, and so forth.
In particle physics, a relativistic particle is an elementary particle with kinetic energy greater than or equal to its rest-mass energy given by Einstein's relation, =, or specifically, of which the velocity is comparable to the speed of light.