Search results
Results from the WOW.Com Content Network
(Techniques have also been devised for generating heteronuclear correlation spectra, in which the two axes correspond to different isotopes, such as 13 C and 1 H.) Diagonal peaks correspond to the peaks in a 1D-NMR experiment, while the cross peaks indicate couplings between pairs of nuclei (much as multiplet splitting indicates couplings in 1D ...
The types of NMR usually done with nucleic acids are 1 H or proton NMR, 13 C NMR, 15 N NMR, and 31 P NMR. Two-dimensional NMR methods are almost always used, such as correlation spectroscopy (COSY) and total coherence transfer spectroscopy (TOCSY) to detect through-bond nuclear couplings, and nuclear Overhauser effect spectroscopy (NOESY) to ...
The information provided by NMR can also be increased using hyperpolarization, and/or using two-dimensional, three-dimensional and higher-dimensional techniques. NMR phenomena are also utilized in low-field NMR, NMR spectroscopy and MRI in the Earth's magnetic field (referred to as Earth's field NMR), and in several types of magnetometers.
Sequential walking is a technique that can be used to solve various 2D NMR spectra. In a 2D experiment, cross peaks must be correlated to the correct nuclei. Using sequential walking, the correct nuclei can be assigned to their crosspeaks. The assigned crosspeaks can give valuable information such as spatial interactions between nuclei.
Therefore, it is advantageous to utilize 2D experiments for the assignment of signals. The table and figures below list most widespread NMR techniques used in carbohydrate studies. Heteronuclear NMR techniques in carbohydrate studies, and typical intra-residue (red) and inter-residue (blue) atoms that they link each to other.
Jeener is best known for introducing two-dimensional NMR spectroscopy (2DNMR). In a lecture at the AMPERE Summer School in Basko Polje, Yugoslavia, September 1971, [6] [7] he proposed a novel technique, later known as Correlation Spectroscopy (COSY), in which the response of the nuclear spins to two radio frequency pulses is treated by a double Fourier transformation with respect to the delay ...
The HSQC experiment is a highly sensitive 2D-NMR experiment and was first described in a 1 H— 15 N system, but is also applicable to other nuclei such as 1 H— 13 C and 1 H— 31 P. The basic scheme of this experiment involves the transfer of magnetization on the proton to the second nucleus, which may be 15 N, 13 C or 31 P, via an INEPT ...
He developed two-dimensional NMR and several novel pulse techniques. He retired in 1998. He participated in the development of medical magnetic resonance tomography, as well as the NMR structure determination of biopolymers in solution collaborating with Professor Kurt Wüthrich. He also participated in the study of intra-molecular dynamics. [17]