Search results
Results from the WOW.Com Content Network
In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) [a] is a technique for numerical integration, i.e., approximating the definite integral: (). The trapezoidal rule works by approximating the region under the graph of the function f ( x ) {\displaystyle f(x)} as a trapezoid and calculating its area.
The area under the effect curve (AUEC) is an integral of the effect of a drug over time, estimated as a previously-established function of concentration. It was proposed to be used instead of AUC in animal-to-human dose translation, as computer simulation shows that it could cope better with half-life and dosing schedule variations than AUC.
To estimate the area under a curve the trapezoid rule is applied first to one-piece, then two, then four, and so on. One-piece. Note since it starts and ends at zero, this approximation yields zero area. Two-piece Four-piece Eight-piece. After trapezoid rule estimates are obtained, Richardson extrapolation is applied.
For instance, in the latter, Simpson's 3rd rule is used to find the volume between two co-ordinates. To calculate the entire area / volume, Simpson's first rule is used. [7] Simpson's rules are used by a ship's officers to check that the area under the ship's GZ curve complies with IMO stability criteria.
Total drug exposure is most often estimated by area under the curve (AUC) methods, with the trapezoidal rule (numerical integration) the most common method. Due to the dependence on the length of x in the trapezoidal rule, the area estimation is highly dependent on the blood/plasma sampling schedule. That is, the closer time points are, the ...
In the task of estimation of full area of narrow peak-like functions, Simpson's rules are much less efficient than trapezoidal rule. Namely, composite Simpson's 1/3 rule requires 1.8 times more points to achieve the same accuracy as trapezoidal rule. [8] Composite Simpson's 3/8 rule is even less accurate.
Hunters and restaurant workers in the area said they had not noticed the manhole-size opening in the hours before Pollard disappeared, leading rescuers to speculate that the sinkhole was new.
The area of the surface of a sphere is equal to quadruple the area of a great circle of this sphere. The area of a segment of the parabola cut from it by a straight line is 4/3 the area of the triangle inscribed in this segment. For the proof of the results Archimedes used the Method of exhaustion of Eudoxus.