Search results
Results from the WOW.Com Content Network
In linear algebra, a column vector with elements is an matrix [1] consisting of a single column of entries, for example, = [].. Similarly, a row vector is a matrix for some , consisting of a single row of entries, = […]. (Throughout this article, boldface is used for both row and column vectors.)
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal.
If is a linear transformation mapping to and is a column vector with entries, then = for some matrix , called the transformation matrix of . [ citation needed ] Note that A {\displaystyle A} has m {\displaystyle m} rows and n {\displaystyle n} columns, whereas the transformation T {\displaystyle T} is from R n {\displaystyle \mathbb {R} ^{n ...
Here, vec(X) denotes the vectorization of the matrix X, formed by stacking the columns of X into a single column vector. It now follows from the properties of the Kronecker product that the equation AXB = C has a unique solution, if and only if A and B are invertible (Horn & Johnson 1991, Lemma 4.3.1).
Matrices can be used to compactly write and work with multiple linear equations, that is, systems of linear equations. For example, if A is an m×n matrix, x designates a column vector (that is, n×1-matrix) of n variables x 1, x 2, ..., x n, and b is an m×1-column vector, then the matrix equation =
To step from n to n + 1, generate a vector v uniformly distributed on the n-sphere S n, embed the n × n matrix in the next larger size with last column (0, ..., 0, 1), and rotate the larger matrix so the last column becomes v. As usual, we have special alternatives for the 3 × 3 case. Each of these methods begins with three independent random ...
In mathematics, especially in linear algebra and matrix theory, the commutation matrix is used for transforming the vectorized form of a matrix into the vectorized form of its transpose. Specifically, the commutation matrix K (m,n) is the nm × mn matrix which, for any m × n matrix A, transforms vec(A) into vec(A T): K (m,n) vec(A) = vec(A T) .
The column space of this matrix is the vector space spanned by the column vectors. In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column vectors. The column space of a matrix is the image or range of the corresponding matrix transformation.