enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ketone - Wikipedia

    en.wikipedia.org/wiki/Ketone

    An aldehyde differs from a ketone in that it has a hydrogen atom attached to its carbonyl group, making aldehydes easier to oxidize. Ketones do not have a hydrogen atom bonded to the carbonyl group, and are therefore more resistant to oxidation. They are oxidized only by powerful oxidizing agents which have the ability to cleave carbon–carbon ...

  3. Aldehyde - Wikipedia

    en.wikipedia.org/wiki/Aldehyde

    Aldehyde structure. In organic chemistry, an aldehyde (/ ˈ æ l d ɪ h aɪ d /) is an organic compound containing a functional group with the structure R−CH=O. [1] The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl group.

  4. Reducing sugar - Wikipedia

    en.wikipedia.org/wiki/Reducing_sugar

    Thus, aldoses are reducing sugars. Sugars with ketone groups in their open chain form are capable of isomerizing via a series of tautomeric shifts to produce an aldehyde group in solution. Therefore, ketones like fructose are considered reducing sugars but it is the isomer containing an aldehyde group which is reducing since ketones cannot be ...

  5. Functional group - Wikipedia

    en.wikipedia.org/wiki/Functional_group

    However, a moiety is an entire "half" of a molecule, which can be not only a single functional group, but also a larger unit consisting of multiple functional groups. For example, an "aryl moiety" may be any group containing an aromatic ring, regardless of how many functional groups the said aryl has.

  6. Enol - Wikipedia

    en.wikipedia.org/wiki/Enol

    In organic chemistry, enols are a type of functional group or intermediate in organic chemistry containing a group with the formula C=C(OH) (R = many substituents). The term enol is an abbreviation of alkenol, a portmanteau deriving from "-ene"/"alkene" and the "-ol". Many kinds of enols are known. [1]

  7. Oxime - Wikipedia

    en.wikipedia.org/wiki/Oxime

    The condensation of aldehydes with hydroxylamine gives aldoximes, and ketoximes are produced from ketones and hydroxylamine. In general, oximes exist as colorless crystals or as thick liquids and are poorly soluble in water. Therefore, oxime formation can be used for the identification of ketone or aldehyde functional groups.

  8. Ketose - Wikipedia

    en.wikipedia.org/wiki/Ketose

    The ketone group is the double-bonded oxygen. In organic chemistry, a ketose is a monosaccharide containing one ketone (>C=O) group per molecule. [1] [2] The simplest ketose is dihydroxyacetone ((CH 2 OH) 2 C=O), which has only three carbon atoms. It is the only ketose with no optical activity.

  9. Aldose - Wikipedia

    en.wikipedia.org/wiki/Aldose

    An aldose is a monosaccharide (a simple sugar) with a carbon backbone chain with a carbonyl group on the endmost carbon atom, making it an aldehyde, and hydroxyl groups connected to all the other carbon atoms. Aldoses can be distinguished from ketoses, which have the carbonyl group away from the end of the molecule, and are therefore ketones.