Ads
related to: rational functions practice problems
Search results
Results from the WOW.Com Content Network
The following is a list of integrals (antiderivative functions) of rational functions. Any rational function can be integrated by partial fraction decomposition of the function into a sum of functions of the form:
Hilbert's seventeenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It concerns the expression of positive definite rational functions as sums of quotients of squares .
Every Laurent polynomial can be written as a rational function while the converse is not necessarily true, i.e., the ring of Laurent polynomials is a subring of the rational functions. The rational function f ( x ) = x x {\displaystyle f(x)={\tfrac {x}{x}}} is equal to 1 for all x except 0, where there is a removable singularity .
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Laplace solved this problem for the case of rational functions, as he showed that the indefinite integral of a rational function is a rational function and a finite number of constant multiples of logarithms of rational functions [citation needed]. The algorithm suggested by Laplace is usually described in calculus textbooks; as a computer ...
If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.
A celebrated case is Lüroth's problem, which Jacob Lüroth solved in the nineteenth century. Lüroth's problem concerns subextensions L of K(X), the rational functions in the single indeterminate X. Any such field is either equal to K or is also rational, i.e. L = K(F) for some rational function F.
Since rational functions with no poles are simply polynomials, we get the following corollary: If K is a compact subset of C such that C\K is a connected set, and f is a holomorphic function on an open set containing K, then there exists a sequence of polynomials () that approaches f uniformly on K (the assumptions can be relaxed, see Mergelyan ...
Ads
related to: rational functions practice problems