Search results
Results from the WOW.Com Content Network
D is the diffusion constant of the solute unit m 2 ⋅s −1, t is time unit s, c 2, c 1 concentration should use unit mol m −3, so flux unit becomes mol s −1. The flux is decay over the square root of time because a concentration gradient builds up near the membrane over time under ideal conditions.
Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) ... Smaller solutes and fluid pass through the membrane, but the membrane ...
Tracer diffusion and Self-diffusion, which is a spontaneous mixing of molecules taking place in the absence of concentration (or chemical potential) gradient. This type of diffusion can be followed using isotopic tracers, hence the name. The tracer diffusion is usually assumed to be identical to self-diffusion (assuming no significant isotopic ...
The process of osmosis over a semipermeable membrane.The blue dots represent particles driving the osmotic gradient. Osmosis (/ ɒ z ˈ m oʊ s ɪ s /, US also / ɒ s-/) [1] is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential ...
Simple diffusion of colloids is fast on length scales of a few micrometres, and so diffusiophoresis would not be useful, whereas on length scales larger than millimetres, diffusiophoresis may be slow as its speed decreases with decreasing size of the solute concentration gradient. Thus, typically diffusiophoresis is employed on length scales ...
6] A semipermeable membrane separates two compartments of different solute concentrations: over time, the solute will diffuse until equilibrium is reached. As mentioned above, passive diffusion is a spontaneous phenomenon that increases the entropy of a system and decreases the free energy. [5]
Passive diffusion across a cell membrane.. Passive transport is a type of membrane transport that does not require energy to move substances across cell membranes. [1] [2] Instead of using cellular energy, like active transport, [3] passive transport relies on the second law of thermodynamics to drive the movement of substances across cell membranes.
Whereas sedimentation seeks to concentrate the solute near the outer radius of the cell, diffusion seeks to equalize the solute concentration throughout the cell. The diffusion constant D can be estimated from the hydrodynamic radius and shape of the solute, whereas the buoyant mass m b can be determined from the ratio of s and D