Search results
Results from the WOW.Com Content Network
In data warehousing, a dimension table is one of the set of companion tables to a fact table. The fact table contains business facts (or measures), and foreign keys which refer to candidate keys (normally primary keys) in the dimension tables.
Example of a star schema; the central table is the fact table. In data warehousing, a fact table consists of the measurements, metrics or facts of a business process. It is located at the center of a star schema or a snowflake schema surrounded by dimension tables. Where multiple fact tables are used, these are arranged as a fact constellation ...
Data Warehouse and Data mart overview, with Data Marts shown in the top right. In computing, a data warehouse (DW or DWH), also known as an enterprise data warehouse (EDW), is a system used for reporting and data analysis and is a core component of business intelligence. [1] Data warehouses are central repositories of data integrated from ...
In computing, the star schema or star model is the simplest style of data mart schema and is the approach most widely used to develop data warehouses and dimensional data marts. [1] The star schema consists of one or more fact tables referencing any number of dimension tables .
This complexity should be transparent to the users of the data warehouse, thus when a request is made, the data warehouse should return data from the table with the correct grain. So when requests to the data warehouse are made, aggregate navigator functionality should be implemented, to help determine the correct table with the correct grain.
Extensibility. Dimensional models are scalable and easily accommodate unexpected new data. Existing tables can be changed in place either by simply adding new data rows into the table or executing SQL alter table commands. No queries or applications that sit on top of the data warehouse need to be reprogrammed to accommodate changes.
Normalization splits up data to avoid redundancy (duplication) by moving commonly repeating groups of data into new tables. Normalization therefore tends to increase the number of tables that need to be joined in order to perform a given query, but reduces the space required to hold the data and the number of places where it needs to be updated if the data changes.
Data warehouses (DWs) are databases used by decision makers to analyze the status and the development of an organization. DWs are based on large amounts of data integrated from heterogeneous sources into multidimensional databases, and they are optimized for accessing data in a way that comes naturally to human analysts (e.g., OLAP applications).