Search results
Results from the WOW.Com Content Network
Joule heating (also known as resistive, resistance, or Ohmic heating) is the process by which the passage of an electric current through a conductor produces heat.. Joule's first law (also just Joule's law), also known in countries of the former USSR as the Joule–Lenz law, [1] states that the power of heating generated by an electrical conductor equals the product of its resistance and the ...
Between 1840 and 1843, Joule carefully studied the heat produced by an electric current. From this study, he developed Joule's laws of heating, the first of which is commonly referred to as the Joule effect. Joule's first law expresses the relationship between heat generated in a conductor and current flow, resistance, and time. [1]
In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.
Copper losses result from Joule heating and so are also referred to as "I squared R losses", in reference to Joule's First Law.This states that the energy lost each second, or power, increases as the square of the current through the windings and in proportion to the electrical resistance of the conductors.
Download as PDF; Printable version ... coaxial cable analyzed in cylindrical coordinates as depicted in the accompanying diagram. ... resistive Joule heating in the ...
As well, heat can be produced then transferred to the work by conduction, convection or radiation. Industrial heating processes can be broadly categorized as low-temperature (to about 400 °C or 752 °F), medium-temperature (between 400 and 1,150 °C or 752 and 2,102 °F), and high-temperature (beyond 1,150 °C or 2,102 °F).
The decrease in Joule heating will cause the device to return to its equilibrium temperature. This is known as negative electrothermal feedback, as the change in Joule heating opposes the change in temperature. If the device is instead biased with a constant current I, the Joule power P = I 2 R will increase if the temperature increases. Thus ...
"An Inquiry Concerning the Source of the Heat Which Is Excited by Friction" is a scientific paper by Benjamin Thompson, Count Rumford, which was published in the Philosophical Transactions of the Royal Society in 1798. [1] The paper provided a substantial challenge to established theories of heat, and began the 19th century revolution in ...