enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fleming's right-hand rule - Wikipedia

    en.wikipedia.org/wiki/Fleming's_right-hand_rule

    There is also a Fleming's left-hand rule (for electric motors). The appropriately handed rule can be recalled from the letter "g", which is in "right" and "generator". These mnemonics are named after British engineer John Ambrose Fleming, who invented them. An equivalent version of Fleming's right-hand rule is the left-hand palm rule. [2]

  3. FBI mnemonics - Wikipedia

    en.wikipedia.org/wiki/FBI_mnemonics

    The various FBI mnemonics (for electric motors) show the direction of the force on a conductor carrying a current in a magnetic field as predicted by Fleming's left hand rule for motors [1] and Faraday's law of induction. Other mnemonics exist that use a right hand rule for predicting resulting motion from a preexisting current and field.

  4. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    Faraday's law of induction (or simply Faraday's law) is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction , is the fundamental operating principle of transformers , inductors , and many types of electric ...

  5. Right-hand rule - Wikipedia

    en.wikipedia.org/wiki/Right-hand_rule

    Right-hand rule for cross product. The cross product of vectors and is a vector perpendicular to the plane spanned by and with the direction given by the right-hand rule: If you put the index of your right hand on and the middle finger on , then the thumb points in the direction of . [4] Fleming's right hand rule

  6. Electromagnetic induction - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_induction

    But when the small coil is moved in or out of the large coil (B), the magnetic flux through the large coil changes, inducing a current which is detected by the galvanometer (G). [1] A diagram of Faraday's iron ring apparatus. Change in the magnetic flux of the left coil induces a current in the right coil. [2]

  7. Faraday paradox - Wikipedia

    en.wikipedia.org/wiki/Faraday_paradox

    1 Faraday's law compared to the Maxwell–Faraday ... the circuit with the radial segment in Figure 2 according to the right-hand rule adds to the applied B ...

  8. Classical electromagnetism and special relativity - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism...

    The first equation listed above corresponds to both Gauss's Law (for β = 0) and the Ampère-Maxwell Law (for β = 1, 2, 3). The second equation corresponds to the two remaining equations, Gauss's law for magnetism (for β = 0) and Faraday's Law (for β = 1, 2, 3).

  9. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.