Search results
Results from the WOW.Com Content Network
Fleming's right-hand rule gives which direction the current flows. The right hand is held with the thumb, index finger and middle finger mutually perpendicular to each other (at right angles), as shown in the diagram. [1] The thumb is pointed in the direction of the motion of the conductor relative to the magnetic field.
Faraday's law of induction (or simply Faraday's law) is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction , is the fundamental operating principle of transformers , inductors , and many types of electric ...
The various FBI mnemonics (for electric motors) show the direction of the force on a conductor carrying a current in a magnetic field as predicted by Fleming's left hand rule for motors [1] and Faraday's law of induction. Other mnemonics exist that use a right hand rule for predicting resulting motion from a preexisting current and field.
Faraday's law of induction makes use of the magnetic flux Φ B through a region of space enclosed by a wire loop. The magnetic flux is defined by a surface integral : [ 13 ] Φ B = ∫ Σ B ⋅ d A , {\displaystyle \Phi _{\mathrm {B} }=\int _{\Sigma }\mathbf {B} \cdot d\mathbf {A} \,,} where d A is an element of the surface Σ enclosed by the ...
1 Faraday's law compared to the Maxwell–Faraday ... the circuit with the radial segment in Figure 2 according to the right-hand rule adds to the applied B-field, ...
Right-hand rule for cross product. The cross product of vectors and is a vector perpendicular to the plane spanned by and with the direction given by the right-hand rule: If you put the index of your right hand on and the middle finger on , then the thumb points in the direction of . [4] Fleming's right hand rule
However, there are cases where Faraday's law is either inadequate or difficult to use, and application of the underlying Lorentz force law is necessary. See inapplicability of Faraday's law. If the magnetic field is fixed in time and the conducting loop moves through the field, the magnetic flux Φ B linking the loop can change in several ways.
The first equation listed above corresponds to both Gauss's Law (for β = 0) and the Ampère-Maxwell Law (for β = 1, 2, 3). The second equation corresponds to the two remaining equations, Gauss's law for magnetism (for β = 0) and Faraday's Law (for β = 1, 2, 3).