enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orthogonal group - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_group

    The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of n × n orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose inverse equals its transpose).

  3. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    The subgroup SO(n) consisting of orthogonal matrices with determinant +1 is called the special orthogonal group, and each of its elements is a special orthogonal matrix. As a linear transformation, every special orthogonal matrix acts as a rotation.

  4. Indefinite orthogonal group - Wikipedia

    en.wikipedia.org/wiki/Indefinite_orthogonal_group

    The indefinite special orthogonal group, SO(p, q) is the subgroup of O(p, q) consisting of all elements with determinant 1. Unlike in the definite case, SO( p , q ) is not connected – it has 2 components – and there are two additional finite index subgroups, namely the connected SO + ( p , q ) and O + ( p , q ) , which has 2 components ...

  5. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    In geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere.It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices.

  6. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    A matrix will preserve or reverse orientation according to whether the determinant of the matrix is positive or negative. For an orthogonal matrix R, note that det R T = det R implies (det R) 2 = 1, so that det R = ±1. The subgroup of orthogonal matrices with determinant +1 is called the special orthogonal group, denoted SO(3).

  7. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    Any element of E(n) is a translation followed by an orthogonal transformation (the linear part of the isometry), in a unique way: (+) where A is an orthogonal matrix. or the same orthogonal transformation followed by a translation: +, with c = Ab. T(n) is a normal subgroup of E(n): for every translation t and every isometry u, the composition ...

  8. Iwasawa decomposition - Wikipedia

    en.wikipedia.org/wiki/Iwasawa_decomposition

    In mathematics, the Iwasawa decomposition (aka KAN from its expression) of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (QR decomposition, a consequence of Gram–Schmidt orthogonalization).

  9. Linear algebraic group - Wikipedia

    en.wikipedia.org/wiki/Linear_algebraic_group

    In mathematics, a linear algebraic group is a subgroup of the group of invertible matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation = where is the transpose of .