Search results
Results from the WOW.Com Content Network
Magnetic resonance angiography (MRA) is a group of techniques based on magnetic resonance imaging (MRI) to image blood vessels. Magnetic resonance angiography is used to generate images of arteries (and less commonly veins) in order to evaluate them for stenosis (abnormal narrowing), occlusions, aneurysms (vessel wall dilatations, at risk of rupture) or other abnormalities.
Flow-mediated dilation (FMD) refers to dilation (widening) of an artery when blood flow increases in that artery. [1] [2] The primary cause of FMD is release of nitric oxide by endothelial cells. [1] To determine FMD, brachial artery dilation following a transient period of forearm ischemia is measured using ultrasound. [3]
Phase contrast magnetic resonance imaging (PC-MRI) is a specific type of magnetic resonance imaging used primarily to determine flow velocities. PC-MRI can be considered a method of Magnetic Resonance Velocimetry. It also provides a method of magnetic resonance angiography.
Angiography is also commonly performed to identify vessels narrowing in patients with leg claudication or cramps, caused by reduced blood flow down the legs and to the feet; in patients with renal stenosis (which commonly causes high blood pressure) and can be used in the head to find and repair stroke. These are all done routinely through the ...
The imaging of venous blood with SWI is a blood-oxygen-level dependent (BOLD) technique which is why it was (and is sometimes still) referred to as BOLD venography. Due to its sensitivity to venous blood SWI is commonly used in traumatic brain injuries (TBI) and for high resolution brain venographies but has many other clinical applications.
Phase contrast MRI (PC-MRI) is used to measure flow velocities in the body. It is used mainly to measure blood flow in the heart and throughout the body. PC-MRI may be considered a method of magnetic resonance velocimetry. Since modern PC-MRI typically is time-resolved, it also may be referred to as 4-D imaging (three spatial dimensions plus time).
The primary form of fMRI uses the blood-oxygen-level dependent (BOLD) contrast, [4] discovered by Seiji Ogawa in 1990. This is a type of specialized brain and body scan used to map neural activity in the brain or spinal cord of humans or other animals by imaging the change in blood flow (hemodynamic response) related to energy use by brain ...
The instantaneous wave-free ratio (iFR, sometimes referred to as the instant wave-free ratio or instant flow reserve) is a diagnostic tool used to assess whether a stenosis is causing a limitation of blood flow in coronary arteries with subsequent ischemia. iFR is performed during cardiac catheterisation (angiography) using invasive coronary pressure wires which are placed in the coronary ...