Search results
Results from the WOW.Com Content Network
The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and Binh. [6] The software developed by Deb can be downloaded, [7] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [8] which implements the NSGA-II procedure with ES.
Shapiro–Wilk test: interval: univariate: 1: Normality test: sample size between 3 and 5000 [16] Kolmogorov–Smirnov test: interval: 1: Normality test: distribution parameters known [16] Shapiro-Francia test: interval: univariate: 1: Normality test: Simpliplification of Shapiro–Wilk test Lilliefors test: interval: 1: Normality test
When working with small sample sizes (i.e., less than 50), the basic / reversed percentile and percentile confidence intervals for (for example) the variance statistic will be too narrow. So that with a sample of 20 points, 90% confidence interval will include the true variance only 78% of the time. [44]
An example of Pearson's test is a comparison of two coins to determine whether they have the same probability of coming up heads. The observations can be put into a contingency table with rows corresponding to the coin and columns corresponding to heads or tails.
Boundary element method (BEM) — based on transforming the PDE to an integral equation on the boundary of the domain Interval boundary element method — a version using interval arithmetics; Analytic element method — similar to the boundary element method, but the integral equation is evaluated analytically
Domain testing is a software testing technique that involves selecting a small number of test cases from a nearly infinite group of candidate test cases. It is one of the most widely practiced software testing techniques.
The Student's t distribution plays a role in a number of widely used statistical analyses, including Student's t test for assessing the statistical significance of the difference between two sample means, the construction of confidence intervals for the difference between two population means, and in linear regression analysis.
The value q s is the sample's test statistic. (The notation | x | means the absolute value of x ; the magnitude of x with the sign set to + , regardless of the original sign of x .) This q s test statistic can then be compared to a q value for the chosen significance level α from a table of the studentized range distribution .