Search results
Results from the WOW.Com Content Network
A two-dimensional system of linear differential equations can be written in the form: [1] = + = + which can be organized into a matrix equation: [] = [] [] =.where A is the 2 × 2 coefficient matrix above, and v = (x, y) is a coordinate vector of two independent variables.
In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in ). In one dimension, it is equivalent to the fundamental theorem of calculus.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
Every operator on a non-trivial complex finite dimensional vector space has an eigenvector, solving the invariant subspace problem for these spaces. In the field of mathematics known as functional analysis , the invariant subspace problem is a partially unresolved problem asking whether every bounded operator on a complex Banach space sends ...
A description of the projective geometry can be constructed in the geometric algebra using basic operations. For example, given two distinct points in RP n−1 represented by vectors a and b the line containing them is given by a ∧ b (or b ∧ a). Two lines intersect in a point if A ∧ B = 0 for their bivectors A and B. This point is given ...
The XY model is a two-dimensional vector spin model that possesses U(1) or circular symmetry. This system is not expected to possess a normal second-order phase transition . This is because the expected ordered phase of the system is destroyed by transverse fluctuations, i.e. the Nambu-Goldstone modes associated with this broken continuous ...
The starting point is a real vector space of dimension 2, V. Define on V ∖ 0 the binary relation v ~ w to hold when there exists a nonzero real number t such that v = tw. The definition of a vector space implies almost immediately that this is an equivalence relation. The equivalence classes are the vector lines from which the zero vector has ...
For example, a vector in three-dimensional space can be decomposed with respect to two axes, respectively normal, and tangent to a surface (see figure). Moreover, the radial and tangential components of a vector relate to the radius of rotation of an object. The former is parallel to the radius and the latter is orthogonal to it.