enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  3. Steinitz exchange lemma - Wikipedia

    en.wikipedia.org/wiki/Steinitz_exchange_lemma

    The Steinitz exchange lemma is a basic theorem in linear algebra used, for example, to show that any two bases for a finite-dimensional vector space have the same number of elements. The result is named after the German mathematician Ernst Steinitz .

  4. Multivector - Wikipedia

    en.wikipedia.org/wiki/Multivector

    In multilinear algebra, a multivector, sometimes called Clifford number or multor, [1] is an element of the exterior algebra Λ(V) of a vector space V.This algebra is graded, associative and alternating, and consists of linear combinations of simple k-vectors [2] (also known as decomposable k-vectors [3] or k-blades) of the form

  5. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    A vector space is finite-dimensional if its dimension is a natural number. Otherwise, it is infinite-dimensional, and its dimension is an infinite cardinal. Finite-dimensional vector spaces occur naturally in geometry and related areas. Infinite-dimensional vector spaces occur in many areas of mathematics.

  6. Phase plane - Wikipedia

    en.wikipedia.org/wiki/Phase_plane

    A two-dimensional system of linear differential equations can be written in the form: [1] = + = + which can be organized into a matrix equation: [] = [] [] =.where A is the 2 × 2 coefficient matrix above, and v = (x, y) is a coordinate vector of two independent variables.

  7. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    For example, the complex numbers C form a two-dimensional vector space over the real numbers R. Likewise, the real numbers R form a vector space over the rational numbers Q which has (uncountably) infinite dimension, if a Hamel basis exists. [b] If V is a vector space over F it may also be regarded as vector space over K. The dimensions are ...

  8. Green's theorem - Wikipedia

    en.wikipedia.org/wiki/Green's_theorem

    In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in ). In one dimension, it is equivalent to the fundamental theorem of calculus.

  9. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The two-dimensional case is the only non-trivial (i.e. not one-dimensional) case where the rotation matrices group is commutative, so that it does not matter in which order multiple rotations are performed. An alternative convention uses rotating axes, [1] and the above matrices also represent a rotation of the axes clockwise through an angle θ.