Search results
Results from the WOW.Com Content Network
Excess volume of the mixture of ethanol and water (volume contraction) Heat of mixing of the mixture of ethanol and water Vapor–liquid equilibrium of the mixture of ethanol and water (including azeotrope) Solid–liquid equilibrium of the mixture of ethanol and water (including eutecticum) Miscibility gap in the mixture of dodecane and ethanol
High percentage ethanol mixtures are used in some racing engine applications as the very high octane rating of ethanol is compatible with very high compression ratios. Ethanol fuel mixtures have "E" numbers which describe the percentage of ethanol fuel in the mixture by volume, for example, E85 is 85% anhydrous ethanol and 15% gasoline. Low ...
Air-fuel ratio is the ratio between the mass of air and the mass of fuel in the air-fuel mix at any given moment. The mass is the mass of all constituents that compose the air or fuel, whether they take part in the combustion or not. For example, a calculation of the mass of natural gas as fuel — which often contains carbon dioxide (CO 2 ...
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
The volume of such a mixture is slightly less than the sum of the volumes of the components. Thus, by the above definition, the term "40% alcohol by volume" refers to a mixture of 40 volume units of ethanol with enough water to make a final volume of 100 units, rather than a mixture of 40 units of ethanol with 60 units of water.
At atmospheric pressure, mixtures of ethanol and water form an azeotrope at about 89.4 mol% ethanol (95.6% ethanol by mass, [84] 97% alcohol by volume), with a boiling point of 351.3 K (78.1 °C). [85] At lower pressure, the composition of the ethanol-water azeotrope shifts to more ethanol-rich mixtures. [86]
For example, Paraffin has very large molecules and thus a high heat capacity per mole, but as a substance it does not have remarkable heat capacity in terms of volume, mass, or atom-mol (which is just 1.41 R per mole of atoms, or less than half of most solids, in terms of heat capacity per atom).
For example, a 50% oxygen, 50% helium mixture will contain approximately the same number of molecules of oxygen and helium. As both oxygen and helium approximate ideal gases at pressures below 200 bar, each will occupy the same volume at the same pressure and temperature, so they can be measured by volume at the same pressure, then mixed, or by ...