Search results
Results from the WOW.Com Content Network
Optical rotation, also known as polarization rotation or circular birefringence, is the rotation of the orientation of the plane of polarization about the optical axis of linearly polarized light as it travels through certain materials. Circular birefringence and circular dichroism are the manifestations of optical activity.
Specific rotation is an intensive property, distinguishing it from the more general phenomenon of optical rotation. As such, the observed rotation (α) of a sample of a compound can be used to quantify the enantiomeric excess of that compound, provided that the specific rotation ([α]) for the enantiopure compound is known.
The specific rotation [] is a physical property and defined as the optical rotation α at a path length l of 1 dm, a concentration c of 10 g/L, a temperature T (usually 20 °C) and a light wavelength λ (usually sodium D line at 589.3 nm): [4]
A simple polarimeter to measure this rotation consists of a long tube with flat glass ends, into which the sample is placed. At each end of the tube is a Nicol prism or other polarizer. Light is shone through the tube, and the prism at the other end, attached to an eye-piece, is rotated to arrive at the region of complete brightness or that of ...
9 Charts. 10 References. Toggle the table of contents. ... Gas properties ... Mass concentration, g/(100 ml) at 15.56 °C
In all materials the rotation varies with wavelength. The variation is caused by two quite different phenomena. The first accounts in most cases for the majority of the variation in rotation and should not strictly be termed rotatory dispersion. It depends on the fact that optical activity is actually circular birefringence.
From the IS4S Salute to Veterans Bowl on Dec. 14 to the College Football Playoff National Championship Game on Jan. 20, 82 teams will play in at least one postseason game.
Water vapor concentration for this gas mixture is 0.4%. Water vapor is a greenhouse gas in the Earth's atmosphere, responsible for 70% of the known absorption of incoming sunlight, particularly in the infrared region, and about 60% of the atmospheric absorption of thermal radiation by the Earth known as the greenhouse effect. [25]