enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line segment - Wikipedia

    en.wikipedia.org/wiki/Line_segment

    Analogous to straight line segments above, one can also define arcs as segments of a curve. In one-dimensional space, a ball is a line segment. An oriented plane segment or bivector generalizes the directed line segment. Beyond Euclidean geometry, geodesic segments play the role of line segments.

  3. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    A number line, with variable x on the left and y on the right. Therefore, x is smaller than y. A point on number line corresponds to a real number and vice versa. [15] Usually, integers are evenly spaced on the line, with positive numbers are on the right, negative numbers on the left.

  4. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    For each pair of lines, there can be only one cell where the two lines meet at the bottom vertex, so the number of downward-bounded cells is at most the number of pairs of lines, () /. Adding the unbounded and bounded cells, the total number of cells in an arrangement can be at most n ( n + 1 ) / 2 + 1 {\displaystyle n(n+1)/2+1} . [ 5 ]

  5. Multiple line segment intersection - Wikipedia

    en.wikipedia.org/wiki/Multiple_line_segment...

    The most common, and more efficient, way to solve this problem for a high number of segments is to use a sweep line algorithm, where we imagine a line sliding across the line segments and we track which line segments it intersects at each point in time using a dynamic data structure based on binary search trees.

  6. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal.

  7. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    In Euclid's Elements, commensurability was described as the ability to compare the length of two line segments, a and b, as a ratio, as long as there were a third segment, no matter how small, that could be laid end-to-end a whole number of times into both a and b.

  8. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    Intersection of two line segments. For two non-parallel line segments (,), (,) and (,), (,) there is not necessarily an intersection point (see diagram), because the intersection point (,) of the corresponding lines need not to be contained in the line segments. In order to check the situation one uses parametric representations of the lines:

  9. Vertex (geometry) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(geometry)

    A vertex of an angle is the endpoint where two lines or rays come together. In geometry, a vertex (pl.: vertices or vertexes) is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. [1] [2] [3]