Search results
Results from the WOW.Com Content Network
The third term accounts for all neutrons that have a collision in that phase space. The first term on the right hand side is the production of neutrons in this phase space due to fission, while the second term on the right hand side is the production of neutrons in this phase space due to delayed neutron precursors (i.e., unstable nuclei which ...
Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. [1] Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed. A transmutation can be achieved either by nuclear reactions (in which an outside particle reacts with a nucleus ...
β−. radiation, the emission of a fast electron from the nucleus. The decay also creates an antineutrino (omitted) and converts a neutron to a proton within the nucleus. The inset shows beta decay of a free neutron; an electron and antineutrino are created in this process.
The BN-350 fast-neutron reactor at Aktau, Kazakhstan.It operated between 1973 and 1994. A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV, on average), as opposed to slow thermal neutrons used in thermal-neutron reactors.
t. e. The neutron flux is a scalar quantity used in nuclear physics and nuclear reactor physics. It is the total distance travelled by all free neutrons per unit time and volume. [1] Equivalently, it can be defined as the number of neutrons travelling through a small sphere of radius in a time interval, divided by a maximal cross section of the ...
t. e. Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. [1] Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, which are repelled electrostatically. [1]
Neutron activation is the only common way that a stable material can be induced into becoming intrinsically radioactive. All naturally occurring materials, including air, water, and soil, can be induced (activated) by neutron capture into some amount of radioactivity in varying degrees, as a result of the production of neutron-rich radioisotopes.
Neutron detection is the effective detection of neutrons entering a well-positioned detector. There are two key aspects to effective neutron detection: hardware and software. Detection hardware refers to the kind of neutron detector used (the most common today is the scintillation detector) and to the electronics used in the detection setup.