Search results
Results from the WOW.Com Content Network
A weight function is a mathematical device used when performing a sum, integral, or average to give some elements more "weight" or influence on the result than other elements in the same set. The result of this application of a weight function is a weighted sum or weighted average .
Greek letters are used in mathematics, science, engineering, and other areas where mathematical notation is used as symbols for constants, special functions, and also conventionally for variables representing certain quantities. In these contexts, the capital letters and the small letters represent distinct and unrelated entities.
The mean for the morning class is 80 and the mean of the afternoon class is 90. The unweighted mean of the two means is 85. However, this does not account for the difference in number of students in each class (20 versus 30); hence the value of 85 does not reflect the average student grade (independent of class).
In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain . Real-valued functions of a real variable (commonly called real functions ) and real-valued functions of several real variables are the main object of study of calculus and ...
In mathematics, orthogonality is the ... the word normal is used to mean orthogonal, ... are orthogonal with respect to a unit weight function on the interval from ...
A.M. – arithmetic mean. AP – arithmetic progression. arccos – inverse cosine function. arccosec – inverse cosecant function. (Also written as arccsc.) arccot – inverse cotangent function. arccsc – inverse cosecant function. (Also written as arccosec.) arcexc – inverse excosecant function. (Also written as arcexcsc, arcexcosec.)
Latin and Greek letters are used in mathematics, science, engineering, and other areas where mathematical notation is used as symbols for constants, special functions, and also conventionally for variables representing certain quantities.
A weight on a Lie algebra g over a field F is a linear map λ: g → F with λ([x, y]) = 0 for all x, y in g. Any weight on a Lie algebra g vanishes on the derived algebra [g,g] and hence descends to a weight on the abelian Lie algebra g/[g,g]. Thus weights are primarily of interest for abelian Lie algebras, where they reduce to the simple ...