Search results
Results from the WOW.Com Content Network
The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. [1] It is an intrinsic expansion, so it does not mean that the universe expands "into" anything or that space exists "outside" it.
In physical cosmology, the age of the universe is the time elapsed since the Big Bang: 13.8 billion years. [1] Astronomers have two different approaches to determine the age of the universe . One is based on a particle physics model of the early universe called Lambda-CDM , matched to measurements of the distant, and thus old features, like the ...
In 1931, Lemaître went further and suggested that the evident expansion of the universe, if projected back in time, meant that the further in the past the smaller the universe was, until at some finite time in the past all the mass of the universe was concentrated into a single point, a "primeval atom" where and when the fabric of time and ...
The thinning of matter over time reduces the ability of the matter to gravitationally decelerate the expansion of the universe; in contrast, dark energy is a constant factor tending to accelerate the expansion of the universe. The universe's expansion passed an inflection point about five or six billion years ago when the universe entered the ...
Perhaps unsurprisingly, our universe has just the right mass–energy density, equivalent to about 5 protons per cubic meter, which has allowed it to expand for the last 13.8 billion years, giving time to form the universe as observed today. [65] [66] There are dynamical forces acting on the particles in the universe which affect the expansion ...
However, it may still be possible to determine the expansion of the universe through the study of hypervelocity stars. [132] 1.05×10 12 (1.05 trillion) The estimated time by which the universe will have expanded by a factor of more than 10 26, reducing the average particle density to less than one particle per cosmological horizon volume ...
In physical cosmology, the Big Rip is a hypothetical cosmological model concerning the ultimate fate of the universe, in which the matter of the universe, from stars and galaxies to atoms and subatomic particles, and even spacetime itself, is progressively torn apart by the expansion of the universe at a certain time in the future, until distances between particles will infinitely increase.
2013 – The galaxy Z8 GND 5296 is confirmed by spectroscopy to be one of the most distant galaxies found up to this time. Formed just 700 million years after the Big Bang, expansion of the universe has carried it to its current location, about 13 billion light years away from Earth (30 billion light years comoving distance). [18]