Search results
Results from the WOW.Com Content Network
[1] For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with a and n both being integers, many computing systems now allow other types of numeric ...
On the other hand, the primes 3, 7, 11, 19, 23 and 31 are all congruent to 3 modulo 4, and none of them can be expressed as the sum of two squares. This is the easier part of the theorem, and follows immediately from the observation that all squares are congruent to 0 (if number squared is even) or 1 (if number squared is odd) modulo 4.
Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.
If p is an odd prime and p − 1 = 2 s d with s > 0 and d odd > 0, then for every a coprime to p, either a d ≡ 1 (mod p) or there exists r such that 0 ≤ r < s and a 2 r d ≡ −1 (mod p). This result may be deduced from Fermat's little theorem by the fact that, if p is an odd prime, then the integers modulo p form a finite field , in which ...
Of the primes occurring in this decomposition, 2, 5, and 7, only 7 is congruent to 3 modulo 4. Its exponent in the decomposition, 2, is even. Therefore, the theorem states that it is expressible as the sum of two squares. Indeed, 2450 = 7 2 + 49 2. The prime decomposition of the number 3430 is 2 · 5 · 7 3. This time, the exponent of 7 in the ...
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
Gauss [10] pointed out that the four squares theorem follows easily from the fact that any positive integer that is 1 or 2 mod 4 is a sum of 3 squares, because any positive integer not divisible by 4 can be reduced to this form by subtracting 0 or 1 from it. However, proving the three-square theorem is considerably more difficult than a direct ...
Introducing the notation a R b (resp. a N b) to mean a is a quadratic residue (resp. nonresidue) (mod b), and letting a, a′, etc. represent positive primes ≡ 1 (mod 4) and b, b′, etc. positive primes ≡ 3 (mod 4), he breaks it out into the same 8 cases as Legendre: