enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    A process during which the entropy remains constant is called an isentropic process, written = or =. [12] Some examples of theoretically isentropic thermodynamic devices are pumps , gas compressors , turbines , nozzles , and diffusers .

  3. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    For a supersonic flow in an expanding conduit (M > 1 and dA > 0), the flow is accelerating (dV > 0). For a supersonic flow in a converging conduit (M > 1 and dA < 0), the flow is decelerating (dV < 0). At a throat where dA = 0, either M = 1 or dV = 0 (the flow could be accelerating through M = 1, or it may reach a velocity such that dV = 0).

  4. Degree of reaction - Wikipedia

    en.wikipedia.org/wiki/Degree_of_Reaction

    Where 1 to 3ss in Figure 1 represents the isentropic process beginning from stator inlet at 1 to rotor outlet at 3. And 2 to 3s is the isentropic process from rotor inlet at 2 to rotor outlet at 3. The velocity triangle [ 2 ] (Figure 2.) for the flow process within the stage represents the change in fluid velocity as it flows first in the ...

  5. Rankine cycle - Wikipedia

    en.wikipedia.org/wiki/Rankine_cycle

    Process 3–4: Isentropic expansion: The dry saturated vapour expands through a turbine, generating power. This decreases the temperature and pressure of the vapour, and some condensation may occur. The output in this process can be easily calculated using the chart or tables noted above. Process 4–1: Constant pressure heat rejection in condenser

  6. Brayton cycle - Wikipedia

    en.wikipedia.org/wiki/Brayton_cycle

    isentropic process – the heated, pressurized air then gives up its energy, expanding through a turbine (or series of turbines). Some of the work extracted by the turbine is used to drive the compressor. isobaric process – heat rejection (in the atmosphere). Actual Brayton cycle: adiabatic process – compression; isobaric process – heat ...

  7. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    Sound speed is defined as the wavespeed of an isentropic transformation: (,) (), by the definition of the isoentropic compressibility: (,) (), the soundspeed results always the square root of ratio between the isentropic compressibility and the density: .

  8. Euler's pump and turbine equation - Wikipedia

    en.wikipedia.org/wiki/Euler's_pump_and_turbine...

    With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1] These equations can be derived from the moment of momentum equation when applied for a pump or a turbine.

  9. Steam turbine - Wikipedia

    en.wikipedia.org/wiki/Steam_turbine

    An ideal steam turbine is considered to be an isentropic process, or constant entropy process, in which the entropy of the steam entering the turbine is equal to the entropy of the steam leaving the turbine. No steam turbine is truly isentropic, however, with typical isentropic efficiencies ranging from 20 to 90% based on the application of the ...