enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. X-ray crystallography - Wikipedia

    en.wikipedia.org/wiki/X-ray_crystallography

    An X-ray diffraction pattern of a crystallized enzyme. The pattern of spots (reflections) and the relative strength of each spot (intensities) can be used to determine the structure of the enzyme. The relative intensities of the reflections provides information to determine the arrangement of molecules within the crystal in atomic detail.

  3. R-factor (crystallography) - Wikipedia

    en.wikipedia.org/wiki/R-factor_(crystallography)

    The minimum possible value is zero, indicating perfect agreement between experimental observations and the structure factors predicted from the model. There is no theoretical maximum, but in practice, values are considerably less than one even for poor models, provided the model includes a suitable scale factor.

  4. X-ray scattering techniques - Wikipedia

    en.wikipedia.org/wiki/X-ray_scattering_techniques

    Note that X-ray diffraction is sometimes considered a sub-set of X-ray scattering, where the scattering is elastic and the scattering object is crystalline, so that the resulting pattern contains sharp spots analyzed by X-ray crystallography (as in the Figure).

  5. X-ray diffraction - Wikipedia

    en.wikipedia.org/wiki/X-ray_diffraction

    The resulting map of the directions of the X-rays far from the sample is called a diffraction pattern. It is different from X-ray crystallography which exploits X-ray diffraction to determine the arrangement of atoms in materials, and also has other components such as ways to map from experimental diffraction measurements to the positions of atoms.

  6. Scherrer equation - Wikipedia

    en.wikipedia.org/wiki/Scherrer_Equation

    The Scherrer equation, in X-ray diffraction and crystallography, is a formula that relates the size of sub-micrometre crystallites in a solid to the broadening of a peak in a diffraction pattern. It is often referred to, incorrectly, as a formula for particle size measurement or analysis.

  7. Clay mineral X-ray diffraction - Wikipedia

    en.wikipedia.org/wiki/Clay_Mineral_X-Ray_Diffraction

    D positions are calculated using Bragg’s law but because clay mineral analysis is one dimensional, l can substitute n, making the equation l λ = 2d sin Θ. When measuring the x-ray diffraction of clays, d is constant and λ is the known wavelength from the x-ray source, so the distance from one 00l peak to another is equal. [3]

  8. Wide-angle X-ray scattering - Wikipedia

    en.wikipedia.org/wiki/Wide-angle_X-ray_scattering

    It is an X-ray-diffraction [2] method and commonly used to determine a range of information about crystalline materials. The term WAXS is commonly used in polymer sciences to differentiate it from SAXS but many scientists doing "WAXS" would describe the measurements as Bragg/X-ray/powder diffraction or crystallography .

  9. Powder diffraction - Wikipedia

    en.wikipedia.org/wiki/Powder_diffraction

    Laboratory X-ray diffraction equipment relies on the use of an X-ray tube, which is used to produce the X-rays. The most commonly used laboratory X-ray tube uses a copper anode, but cobalt and molybdenum are also popular. The wavelength in nm varies for each source. The table below shows these wavelengths, determined by Bearden [14] (all values ...