Search results
Results from the WOW.Com Content Network
Thymus atrophy during early human development (childhood) is an example of physiologic atrophy. Skeletal muscle atrophy is a common pathologic adaptation to skeletal muscle disuse (commonly called "disuse atrophy"). Tissue and organs especially susceptible to atrophy include skeletal muscle, cardiac muscle, secondary sex organs, and the brain ...
Atrophy is the partial or complete wasting away of a part of the body. Causes of atrophy include mutations (which can destroy the gene to build up the organ), poor nourishment, poor circulation, loss of hormonal support, loss of nerve supply to the target organ, excessive amount of apoptosis of cells, and disuse or lack of exercise or disease intrinsic to the tissue itself.
Multiple system atrophy is estimated to affect approximately 5 per 100,000 people. At autopsy, many patients diagnosed during life with Parkinson's disease are found actually to have MSA, suggesting that the actual incidence of MSA is higher than that estimate. [4]
Muscle atrophy from intristic disease in an 18-year-old woman, weight 27 pounds (12.2 kg) Muscle atrophy from intristic disease in a 17-year-old girl with chronic rheumatism. Muscle diseases, such as muscular dystrophy, amyotrophic lateral sclerosis (ALS), or myositis such as inclusion body myositis can cause muscle atrophy. [13]
Cerebral atrophy is a common feature of many of the diseases that affect the brain. [1] Atrophy of any tissue means a decrement in the size of the cell, which can be due to progressive loss of cytoplasmic proteins.
Pathophysiology (or physiopathology) is a branch of study, at the intersection of pathology and physiology, concerning disordered physiological processes that cause, result from, or are otherwise associated with a disease or injury.
Prognosis depends on the individual form of muscular dystrophy. Some dystrophies cause progressive weakness and loss of muscle function, which may result in severe physical disability and a life-threatening deterioration of respiratory muscles or heart. Other dystrophies do not affect life expectancy and only cause relatively mild impairment. [2]
Spinal and bulbar muscular atrophy (SBMA), popularly known as Kennedy's disease, is a rare, adult-onset, X-linked recessive lower motor neuron disease caused by trinucleotide CAG repeat expansions in exon 1 of the androgen receptor (AR) gene, which results in both loss of AR function and toxic gain of function.