enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    For gaseous or fluid bodies, such as stars and giant planets, the period of rotation varies from the object's equator to its pole due to a phenomenon called differential rotation. Typically, the stated rotation period for a giant planet (such as Jupiter, Saturn, Uranus, Neptune) is its internal rotation period, as determined from the rotation ...

  3. Neptune - Wikipedia

    en.wikipedia.org/wiki/Neptune

    Neptune is the eighth and farthest known planet from the Sun. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times the mass of Earth. Compared to its fellow ice giant Uranus, Neptune is slightly more massive, but

  4. Poles of astronomical bodies - Wikipedia

    en.wikipedia.org/wiki/Poles_of_astronomical_bodies

    Venus rotates clockwise, and Uranus has been knocked on its side and rotates almost perpendicular to the rest of the Solar System. The ecliptic remains within 3° of the invariable plane over five million years, [ 2 ] but is now inclined about 23.44° to Earth's celestial equator used for the coordinates of poles.

  5. Retrograde and prograde motion - Wikipedia

    en.wikipedia.org/wiki/Retrograde_and_prograde_motion

    Prograde satellites of Uranus orbit in the direction Uranus rotates, which is retrograde to the Sun. Nearly all regular satellites are tidally locked and thus have prograde rotation. Retrograde satellites are generally small and distant from their planets, except Neptune's satellite Triton, which is large and close.

  6. Stability of the Solar System - Wikipedia

    en.wikipedia.org/wiki/Stability_of_the_Solar_System

    Another common form of resonance in the Solar System is spin–orbit resonance, where the rotation period (the time it takes the planet or moon to rotate once about its axis) has a simple numerical relationship with its orbital period. An example is the Moon, which is in a 1:1 spin–orbit resonance that keeps its far side away from

  7. Rings of Neptune - Wikipedia

    en.wikipedia.org/wiki/Rings_of_Neptune

    Rings of Neptune imaged by the James Webb Space Telescope's NIRCam instrument. The rings of Neptune consist primarily of five principal rings.They were first discovered (as "arcs") by simultaneous observations of a stellar occultation on 22 July 1984 by André Brahic's and William B. Hubbard's teams at La Silla Observatory (ESO) and at Cerro Tololo Interamerican Observatory in Chile. [1]

  8. Exploration of Neptune - Wikipedia

    en.wikipedia.org/wiki/Exploration_of_Neptune

    Voyager 2 studied Neptune's atmosphere, Neptune's rings, its magnetosphere, and Neptune's moons. [6] The Neptunian system had been studied scientifically for many years with telescopes and indirect methods, but the close inspection by the Voyager 2 probe settled many issues [ example needed ] and revealed a plethora of information that could ...

  9. Proteus (moon) - Wikipedia

    en.wikipedia.org/wiki/Proteus_(moon)

    Proteus is the second-largest moon of Neptune and is the largest of its regular prograde moons. It is about 420 km (260 mi) in diameter, larger than Nereid, Neptune's third-largest moon. It was not discovered by Earth-based telescopes because Proteus orbits so close to Neptune that it is lost in the glare of reflected sunlight. [15]