enow.com Web Search

  1. Ad

    related to: inverse function graph examples problems

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  3. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    Sometimes, the inverse of a function cannot be expressed by a closed-form formula. For example, if f is the function = ⁡, then f is a bijection, and therefore possesses an inverse function f −1. The formula for this inverse has an expression as an infinite sum:

  4. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).

  5. Restriction (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Restriction_(mathematics)

    For a function to have an inverse, it must be one-to-one.If a function is not one-to-one, it may be possible to define a partial inverse of by restricting the domain. For example, the function = defined on the whole of is not one-to-one since = for any .

  6. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    The graph of an involution (on the real numbers) is symmetric across the line y = x. This is due to the fact that the inverse of any general function will be its reflection over the line y = x. This can be seen by "swapping" x with y. If, in particular, the function is an involution, then its graph is its own reflection.

  7. Lagrange inversion theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange_inversion_theorem

    Actually, the machinery from analytic function theory enters only in a formal way in this proof, in that what is really needed is some property of the formal residue, and a more direct formal proof is available. In fact, the Lagrange inversion theorem has a number of additional rather different proofs, including ones using tree-counting ...

  8. Multivalued function - Wikipedia

    en.wikipedia.org/wiki/Multivalued_function

    When f is a differentiable function between manifolds, the inverse function theorem gives conditions for this to be single-valued locally in X. For example, the complex logarithm log(z) is the multivalued inverse of the exponential function e z : C → C ×, with graph

  9. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  1. Ad

    related to: inverse function graph examples problems