enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    It follows that the null space of A is the orthogonal complement to the row space. For example, if the row space is a plane through the origin in three dimensions, then the null space will be the perpendicular line through the origin. This provides a proof of the rank–nullity theorem (see dimension above).

  3. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The left null space of A is the same as the kernel of A T. The left null space of A is the orthogonal complement to the column space of A, and is dual to the cokernel of the associated linear transformation. The kernel, the row space, the column space, and the left null space of A are the four fundamental subspaces associated with the matrix A.

  4. Kernel (algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(algebra)

    The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix. The kernel of a homomorphism is reduced to 0 (or 1) if and only if the homomorphism is injective, that is if the inverse image of every element consists of a single element. This means that the kernel can be viewed as a measure of the ...

  5. Codimension - Wikipedia

    en.wikipedia.org/wiki/Codimension

    More generally, if W is a linear subspace of a (possibly infinite dimensional) vector space V then the codimension of W in V is the dimension (possibly infinite) of the quotient space V/W, which is more abstractly known as the cokernel of the inclusion. For finite-dimensional vector spaces, this agrees with the previous definition

  6. Zero-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Zero-dimensional_space

    In mathematics, a zero-dimensional topological space (or nildimensional space) is a topological space that has dimension zero with respect to one of several inequivalent notions of assigning a dimension to a given topological space. [1] A graphical illustration of a zero-dimensional space is a point. [2]

  7. Incidence matrix - Wikipedia

    en.wikipedia.org/wiki/Incidence_matrix

    The integral cycle space of a graph is equal to the null space of its oriented incidence matrix, viewed as a matrix over the integers or real or complex numbers. The binary cycle space is the null space of its oriented or unoriented incidence matrix, viewed as a matrix over the two-element field.

  8. k-d tree - Wikipedia

    en.wikipedia.org/wiki/K-d_tree

    In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. K-dimensional is that which concerns exactly k orthogonal axes or a space of any number of dimensions. [1] k-d trees are a useful data structure for several applications, such as:

  9. Metric signature - Wikipedia

    en.wikipedia.org/wiki/Metric_signature

    The number v (resp. p) is the maximal dimension of a vector subspace on which the scalar product g is positive-definite (resp. negative-definite), and r is the dimension of the radical of the scalar product g or the null subspace of symmetric matrix g ab of the scalar product. Thus a nondegenerate scalar product has signature (v, p, 0), with v ...