enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    It follows that the null space of A is the orthogonal complement to the row space. For example, if the row space is a plane through the origin in three dimensions, then the null space will be the perpendicular line through the origin. This provides a proof of the rank–nullity theorem (see dimension above).

  3. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The left null space of A is the same as the kernel of A T. The left null space of A is the orthogonal complement to the column space of A, and is dual to the cokernel of the associated linear transformation. The kernel, the row space, the column space, and the left null space of A are the four fundamental subspaces associated with the matrix A.

  4. Kernel (algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(algebra)

    The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix. The kernel of a homomorphism is reduced to 0 (or 1) if and only if the homomorphism is injective, that is if the inverse image of every element consists of a single element. This means that the kernel can be viewed as a measure of the ...

  5. Codimension - Wikipedia

    en.wikipedia.org/wiki/Codimension

    More generally, if W is a linear subspace of a (possibly infinite dimensional) vector space V then the codimension of W in V is the dimension (possibly infinite) of the quotient space V/W, which is more abstractly known as the cokernel of the inclusion. For finite-dimensional vector spaces, this agrees with the previous definition

  6. Zero-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Zero-dimensional_space

    In mathematics, a zero-dimensional topological space (or nildimensional space) is a topological space that has dimension zero with respect to one of several inequivalent notions of assigning a dimension to a given topological space. [1] A graphical illustration of a zero-dimensional space is a point. [2]

  7. Minimal polynomial (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_(linear...

    the kernel of P(A) has dimension at least 1. the kernel of P(A) has dimension at least deg(P). Like the characteristic polynomial, the minimal polynomial does not depend on the base field. In other words, considering the matrix as one with coefficients in a larger field does not change the minimal polynomial.

  8. k-d tree - Wikipedia

    en.wikipedia.org/wiki/K-d_tree

    In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. K-dimensional is that which concerns exactly k orthogonal axes or a space of any number of dimensions. [1] k-d trees are a useful data structure for several applications, such as:

  9. Invariant subspace - Wikipedia

    en.wikipedia.org/wiki/Invariant_subspace

    As the above examples indicate, the invariant subspaces of a given linear transformation T shed light on the structure of T. When V is a finite-dimensional vector space over an algebraically closed field , linear transformations acting on V are characterized (up to similarity) by the Jordan canonical form , which decomposes V into invariant ...

  1. Related searches how to find the dimension of a null space in matlab file structure crossword

    column space dimensionrow space of a matrix