Search results
Results from the WOW.Com Content Network
The form of the Schrödinger equation depends on the physical situation. The most general form is the time-dependent Schrödinger equation, which gives a description of a system evolving with time: [12]: 143
and this is the Schrödinger equation. Note that the normalization of the path integral needs to be fixed in exactly the same way as in the free particle case. An arbitrary continuous potential does not affect the normalization, although singular potentials require careful treatment.
The term "spin function" instead of "wave function" is used by some authors. This contrasts the solutions to position space wave functions, the position coordinates being continuous degrees of freedom, because then the Schrödinger equation does take the form of a wave equation.
The Schrödinger–Newton equation, sometimes referred to as the Newton–Schrödinger or Schrödinger–Poisson equation, is a nonlinear modification of the Schrödinger equation with a Newtonian gravitational potential, where the gravitational potential emerges from the treatment of the wave function as a mass density, including a term that represents interaction of a particle with its own ...
The failure of classical mechanics applied to molecular, atomic, and nuclear systems and smaller induced the need for a new mechanics: quantum mechanics.The mathematical formulation was led by De Broglie, Bohr, Schrödinger, Pauli, and Heisenberg, and others, around the mid-1920s, and at that time was analogous to that of classical mechanics.
The original form of the Schrödinger equation depends on choosing a particular representation of Heisenberg's canonical commutation relations. The Stone–von Neumann theorem dictates that all irreducible representations of the finite-dimensional Heisenberg commutation relations are unitarily equivalent.
Since the only wavefunction that can have lowest position-momentum uncertainty, , is a gaussian wavefunction, and since the coherent state wavefunction has minimum position-momentum uncertainty, we note that the general gaussian wavefunction in quantum mechanics has the form: (′) = ^ (′ ^ ) (′ ^ ).
The time-independent Schrödinger equation for the wave function is ^ = [+ ()] = (), where Ĥ is the Hamiltonian, ħ is the reduced Planck constant, m is the mass, E the energy of the particle. The step potential is simply the product of V 0 , the height of the barrier, and the Heaviside step function : V ( x ) = { 0 , x < 0 V 0 , x ≥ 0 ...